/* * Copyright (C) 2012 Mark Himsley * * get_scene_score() Copyright (c) 2011 Stefano Sabatini * taken from libavfilter/vf_select.c * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * filter for upsampling or downsampling a progressive source */ #define DEBUG #include "libavutil/avassert.h" #include "libavutil/imgutils.h" #include "libavutil/internal.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "libavutil/pixelutils.h" #include "avfilter.h" #include "internal.h" #include "video.h" #define N_SRCE 3 typedef struct FrameRateContext { const AVClass *class; // parameters AVRational dest_frame_rate; ///< output frames per second int flags; ///< flags affecting frame rate conversion algorithm double scene_score; ///< score that denotes a scene change has happened int interp_start; ///< start of range to apply linear interpolation int interp_end; ///< end of range to apply linear interpolation int line_size[4]; ///< bytes of pixel data per line for each plane int vsub; int frst, next, prev, crnt, last; int pending_srce_frames; ///< how many input frames are still waiting to be processed int flush; ///< are we flushing final frames int pending_end_frame; ///< flag indicating we are waiting to call filter_frame() AVRational srce_time_base; ///< timebase of source AVRational dest_time_base; ///< timebase of destination int32_t dest_frame_num; int64_t last_dest_frame_pts; ///< pts of the last frame output int64_t average_srce_pts_dest_delta;///< average input pts delta converted from input rate to output rate int64_t average_dest_pts_delta; ///< calculated average output pts delta av_pixelutils_sad_fn sad; ///< Sum of the absolute difference function (scene detect only) double prev_mafd; ///< previous MAFD (scene detect only) AVFrame *srce[N_SRCE]; ///< buffered source frames int64_t srce_pts_dest[N_SRCE]; ///< pts for source frames scaled to output timebase int64_t pts; ///< pts of frame we are working on int (*blend_frames)(AVFilterContext *ctx, float interpolate, AVFrame *copy_src1, AVFrame *copy_src2); int max; int bitdepth; AVFrame *work; } FrameRateContext; #define OFFSET(x) offsetof(FrameRateContext, x) #define V AV_OPT_FLAG_VIDEO_PARAM #define F AV_OPT_FLAG_FILTERING_PARAM #define FRAMERATE_FLAG_SCD 01 static const AVOption framerate_options[] = { {"fps", "required output frames per second rate", OFFSET(dest_frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str="50"}, 0, INT_MAX, V|F }, {"interp_start", "point to start linear interpolation", OFFSET(interp_start), AV_OPT_TYPE_INT, {.i64=15}, 0, 255, V|F }, {"interp_end", "point to end linear interpolation", OFFSET(interp_end), AV_OPT_TYPE_INT, {.i64=240}, 0, 255, V|F }, {"scene", "scene change level", OFFSET(scene_score), AV_OPT_TYPE_DOUBLE, {.dbl=7.0}, 0, INT_MAX, V|F }, {"flags", "set flags", OFFSET(flags), AV_OPT_TYPE_FLAGS, {.i64=1}, 0, INT_MAX, V|F, "flags" }, {"scene_change_detect", "enable scene change detection", 0, AV_OPT_TYPE_CONST, {.i64=FRAMERATE_FLAG_SCD}, INT_MIN, INT_MAX, V|F, "flags" }, {"scd", "enable scene change detection", 0, AV_OPT_TYPE_CONST, {.i64=FRAMERATE_FLAG_SCD}, INT_MIN, INT_MAX, V|F, "flags" }, {NULL} }; AVFILTER_DEFINE_CLASS(framerate); static void next_source(AVFilterContext *ctx) { FrameRateContext *s = ctx->priv; int i; ff_dlog(ctx, "next_source()\n"); if (s->srce[s->last] && s->srce[s->last] != s->srce[s->last-1]) { ff_dlog(ctx, "next_source() unlink %d\n", s->last); av_frame_free(&s->srce[s->last]); } for (i = s->last; i > s->frst; i--) { ff_dlog(ctx, "next_source() copy %d to %d\n", i - 1, i); s->srce[i] = s->srce[i - 1]; } ff_dlog(ctx, "next_source() make %d null\n", s->frst); s->srce[s->frst] = NULL; } static av_always_inline int64_t sad_8x8_16(const uint16_t *src1, ptrdiff_t stride1, const uint16_t *src2, ptrdiff_t stride2) { int sum = 0; int x, y; for (y = 0; y < 8; y++) { for (x = 0; x < 8; x++) sum += FFABS(src1[x] - src2[x]); src1 += stride1; src2 += stride2; } return sum; } static double get_scene_score16(AVFilterContext *ctx, AVFrame *crnt, AVFrame *next) { FrameRateContext *s = ctx->priv; double ret = 0; ff_dlog(ctx, "get_scene_score16()\n"); if (crnt && crnt->height == next->height && crnt->width == next->width) { int x, y; int64_t sad; double mafd, diff; const uint16_t *p1 = (const uint16_t *)crnt->data[0]; const uint16_t *p2 = (const uint16_t *)next->data[0]; const int p1_linesize = crnt->linesize[0] / 2; const int p2_linesize = next->linesize[0] / 2; ff_dlog(ctx, "get_scene_score16() process\n"); for (sad = y = 0; y < crnt->height; y += 8) { for (x = 0; x < p1_linesize; x += 8) { sad += sad_8x8_16(p1 + y * p1_linesize + x, p1_linesize, p2 + y * p2_linesize + x, p2_linesize); } } mafd = sad / (crnt->height * crnt->width * 3); diff = fabs(mafd - s->prev_mafd); ret = av_clipf(FFMIN(mafd, diff), 0, 100.0); s->prev_mafd = mafd; } ff_dlog(ctx, "get_scene_score16() result is:%f\n", ret); return ret; } static double get_scene_score(AVFilterContext *ctx, AVFrame *crnt, AVFrame *next) { FrameRateContext *s = ctx->priv; double ret = 0; ff_dlog(ctx, "get_scene_score()\n"); if (crnt && crnt->height == next->height && crnt->width == next->width) { int x, y; int64_t sad; double mafd, diff; uint8_t *p1 = crnt->data[0]; uint8_t *p2 = next->data[0]; const int p1_linesize = crnt->linesize[0]; const int p2_linesize = next->linesize[0]; ff_dlog(ctx, "get_scene_score() process\n"); for (sad = y = 0; y < crnt->height; y += 8) { for (x = 0; x < p1_linesize; x += 8) { sad += s->sad(p1 + y * p1_linesize + x, p1_linesize, p2 + y * p2_linesize + x, p2_linesize); } } emms_c(); mafd = sad / (crnt->height * crnt->width * 3); diff = fabs(mafd - s->prev_mafd); ret = av_clipf(FFMIN(mafd, diff), 0, 100.0); s->prev_mafd = mafd; } ff_dlog(ctx, "get_scene_score() result is:%f\n", ret); return ret; } static int blend_frames16(AVFilterContext *ctx, float interpolate, AVFrame *copy_src1, AVFrame *copy_src2) { FrameRateContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; double interpolate_scene_score = 0; if ((s->flags & FRAMERATE_FLAG_SCD) && copy_src2) { interpolate_scene_score = get_scene_score16(ctx, copy_src1, copy_src2); ff_dlog(ctx, "blend_frames16() interpolate scene score:%f\n", interpolate_scene_score); } // decide if the shot-change detection allows us to blend two frames if (interpolate_scene_score < s->scene_score && copy_src2) { uint16_t src2_factor = fabsf(interpolate) * (1 << (s->bitdepth - 8)); uint16_t src1_factor = s->max - src2_factor; const int half = s->max / 2; const int uv = (s->max + 1) * half; const int shift = s->bitdepth; int plane, line, pixel; // get work-space for output frame s->work = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!s->work) return AVERROR(ENOMEM); av_frame_copy_props(s->work, s->srce[s->crnt]); ff_dlog(ctx, "blend_frames16() INTERPOLATE to create work frame\n"); for (plane = 0; plane < 4 && copy_src1->data[plane] && copy_src2->data[plane]; plane++) { int cpy_line_width = s->line_size[plane]; const uint16_t *cpy_src1_data = (const uint16_t *)copy_src1->data[plane]; int cpy_src1_line_size = copy_src1->linesize[plane] / 2; const uint16_t *cpy_src2_data = (const uint16_t *)copy_src2->data[plane]; int cpy_src2_line_size = copy_src2->linesize[plane] / 2; int cpy_src_h = (plane > 0 && plane < 3) ? (copy_src1->height >> s->vsub) : (copy_src1->height); uint16_t *cpy_dst_data = (uint16_t *)s->work->data[plane]; int cpy_dst_line_size = s->work->linesize[plane] / 2; if (plane <1 || plane >2) { // luma or alpha for (line = 0; line < cpy_src_h; line++) { for (pixel = 0; pixel < cpy_line_width; pixel++) cpy_dst_data[pixel] = ((cpy_src1_data[pixel] * src1_factor) + (cpy_src2_data[pixel] * src2_factor) + half) >> shift; cpy_src1_data += cpy_src1_line_size; cpy_src2_data += cpy_src2_line_size; cpy_dst_data += cpy_dst_line_size; } } else { // chroma for (line = 0; line < cpy_src_h; line++) { for (pixel = 0; pixel < cpy_line_width; pixel++) { cpy_dst_data[pixel] = (((cpy_src1_data[pixel] - half) * src1_factor) + ((cpy_src2_data[pixel] - half) * src2_factor) + uv) >> shift; } cpy_src1_data += cpy_src1_line_size; cpy_src2_data += cpy_src2_line_size; cpy_dst_data += cpy_dst_line_size; } } } return 1; } return 0; } static int blend_frames8(AVFilterContext *ctx, float interpolate, AVFrame *copy_src1, AVFrame *copy_src2) { FrameRateContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; double interpolate_scene_score = 0; if ((s->flags & FRAMERATE_FLAG_SCD) && copy_src2) { interpolate_scene_score = get_scene_score(ctx, copy_src1, copy_src2); ff_dlog(ctx, "blend_frames8() interpolate scene score:%f\n", interpolate_scene_score); } // decide if the shot-change detection allows us to blend two frames if (interpolate_scene_score < s->scene_score && copy_src2) { uint16_t src2_factor = fabsf(interpolate); uint16_t src1_factor = 256 - src2_factor; int plane, line, pixel; // get work-space for output frame s->work = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!s->work) return AVERROR(ENOMEM); av_frame_copy_props(s->work, s->srce[s->crnt]); ff_dlog(ctx, "blend_frames8() INTERPOLATE to create work frame\n"); for (plane = 0; plane < 4 && copy_src1->data[plane] && copy_src2->data[plane]; plane++) { int cpy_line_width = s->line_size[plane]; uint8_t *cpy_src1_data = copy_src1->data[plane]; int cpy_src1_line_size = copy_src1->linesize[plane]; uint8_t *cpy_src2_data = copy_src2->data[plane]; int cpy_src2_line_size = copy_src2->linesize[plane]; int cpy_src_h = (plane > 0 && plane < 3) ? (copy_src1->height >> s->vsub) : (copy_src1->height); uint8_t *cpy_dst_data = s->work->data[plane]; int cpy_dst_line_size = s->work->linesize[plane]; if (plane <1 || plane >2) { // luma or alpha for (line = 0; line < cpy_src_h; line++) { for (pixel = 0; pixel < cpy_line_width; pixel++) { // integer version of (src1 * src1_factor) + (src2 + src2_factor) + 0.5 // 0.5 is for rounding // 128 is the integer representation of 0.5 << 8 cpy_dst_data[pixel] = ((cpy_src1_data[pixel] * src1_factor) + (cpy_src2_data[pixel] * src2_factor) + 128) >> 8; } cpy_src1_data += cpy_src1_line_size; cpy_src2_data += cpy_src2_line_size; cpy_dst_data += cpy_dst_line_size; } } else { // chroma for (line = 0; line < cpy_src_h; line++) { for (pixel = 0; pixel < cpy_line_width; pixel++) { // as above // because U and V are based around 128 we have to subtract 128 from the components. // 32896 is the integer representation of 128.5 << 8 cpy_dst_data[pixel] = (((cpy_src1_data[pixel] - 128) * src1_factor) + ((cpy_src2_data[pixel] - 128) * src2_factor) + 32896) >> 8; } cpy_src1_data += cpy_src1_line_size; cpy_src2_data += cpy_src2_line_size; cpy_dst_data += cpy_dst_line_size; } } } return 1; } return 0; } static int process_work_frame(AVFilterContext *ctx, int stop) { FrameRateContext *s = ctx->priv; int64_t work_next_pts; AVFrame *copy_src1; float interpolate; ff_dlog(ctx, "process_work_frame()\n"); ff_dlog(ctx, "process_work_frame() pending_input_frames %d\n", s->pending_srce_frames); if (s->srce[s->prev]) ff_dlog(ctx, "process_work_frame() srce prev pts:%"PRId64"\n", s->srce[s->prev]->pts); if (s->srce[s->crnt]) ff_dlog(ctx, "process_work_frame() srce crnt pts:%"PRId64"\n", s->srce[s->crnt]->pts); if (s->srce[s->next]) ff_dlog(ctx, "process_work_frame() srce next pts:%"PRId64"\n", s->srce[s->next]->pts); if (!s->srce[s->crnt]) { // the filter cannot do anything ff_dlog(ctx, "process_work_frame() no current frame cached: move on to next frame, do not output a frame\n"); next_source(ctx); return 0; } work_next_pts = s->pts + s->average_dest_pts_delta; ff_dlog(ctx, "process_work_frame() work crnt pts:%"PRId64"\n", s->pts); ff_dlog(ctx, "process_work_frame() work next pts:%"PRId64"\n", work_next_pts); if (s->srce[s->prev]) ff_dlog(ctx, "process_work_frame() srce prev pts:%"PRId64" at dest time base:%u/%u\n", s->srce_pts_dest[s->prev], s->dest_time_base.num, s->dest_time_base.den); if (s->srce[s->crnt]) ff_dlog(ctx, "process_work_frame() srce crnt pts:%"PRId64" at dest time base:%u/%u\n", s->srce_pts_dest[s->crnt], s->dest_time_base.num, s->dest_time_base.den); if (s->srce[s->next]) ff_dlog(ctx, "process_work_frame() srce next pts:%"PRId64" at dest time base:%u/%u\n", s->srce_pts_dest[s->next], s->dest_time_base.num, s->dest_time_base.den); av_assert0(s->srce[s->next]); // should filter be skipping input frame (output frame rate is lower than input frame rate) if (!s->flush && s->pts >= s->srce_pts_dest[s->next]) { ff_dlog(ctx, "process_work_frame() work crnt pts >= srce next pts: SKIP FRAME, move on to next frame, do not output a frame\n"); next_source(ctx); s->pending_srce_frames--; return 0; } // calculate interpolation interpolate = ((s->pts - s->srce_pts_dest[s->crnt]) * 256.0 / s->average_srce_pts_dest_delta); ff_dlog(ctx, "process_work_frame() interpolate:%f/256\n", interpolate); copy_src1 = s->srce[s->crnt]; if (interpolate > s->interp_end) { ff_dlog(ctx, "process_work_frame() source is:NEXT\n"); copy_src1 = s->srce[s->next]; } if (s->srce[s->prev] && interpolate < -s->interp_end) { ff_dlog(ctx, "process_work_frame() source is:PREV\n"); copy_src1 = s->srce[s->prev]; } // decide whether to blend two frames if ((interpolate >= s->interp_start && interpolate <= s->interp_end) || (interpolate <= -s->interp_start && interpolate >= -s->interp_end)) { AVFrame *copy_src2; if (interpolate > 0) { ff_dlog(ctx, "process_work_frame() interpolate source is:NEXT\n"); copy_src2 = s->srce[s->next]; } else { ff_dlog(ctx, "process_work_frame() interpolate source is:PREV\n"); copy_src2 = s->srce[s->prev]; } if (s->blend_frames(ctx, interpolate, copy_src1, copy_src2)) goto copy_done; else ff_dlog(ctx, "process_work_frame() CUT - DON'T INTERPOLATE\n"); } ff_dlog(ctx, "process_work_frame() COPY to the work frame\n"); // copy the frame we decided is our base source s->work = av_frame_clone(copy_src1); if (!s->work) return AVERROR(ENOMEM); copy_done: s->work->pts = s->pts; // should filter be re-using input frame (output frame rate is higher than input frame rate) if (!s->flush && (work_next_pts + s->average_dest_pts_delta) < (s->srce_pts_dest[s->crnt] + s->average_srce_pts_dest_delta)) { ff_dlog(ctx, "process_work_frame() REPEAT FRAME\n"); } else { ff_dlog(ctx, "process_work_frame() CONSUME FRAME, move to next frame\n"); s->pending_srce_frames--; next_source(ctx); } ff_dlog(ctx, "process_work_frame() output a frame\n"); s->dest_frame_num++; if (stop) s->pending_end_frame = 0; s->last_dest_frame_pts = s->work->pts; return 1; } static void set_srce_frame_dest_pts(AVFilterContext *ctx) { FrameRateContext *s = ctx->priv; ff_dlog(ctx, "set_srce_frame_output_pts()\n"); // scale the input pts from the timebase difference between input and output if (s->srce[s->prev]) s->srce_pts_dest[s->prev] = av_rescale_q(s->srce[s->prev]->pts, s->srce_time_base, s->dest_time_base); if (s->srce[s->crnt]) s->srce_pts_dest[s->crnt] = av_rescale_q(s->srce[s->crnt]->pts, s->srce_time_base, s->dest_time_base); if (s->srce[s->next]) s->srce_pts_dest[s->next] = av_rescale_q(s->srce[s->next]->pts, s->srce_time_base, s->dest_time_base); } static void set_work_frame_pts(AVFilterContext *ctx) { FrameRateContext *s = ctx->priv; int64_t pts, average_srce_pts_delta = 0; ff_dlog(ctx, "set_work_frame_pts()\n"); av_assert0(s->srce[s->next]); av_assert0(s->srce[s->crnt]); ff_dlog(ctx, "set_work_frame_pts() srce crnt pts:%"PRId64"\n", s->srce[s->crnt]->pts); ff_dlog(ctx, "set_work_frame_pts() srce next pts:%"PRId64"\n", s->srce[s->next]->pts); if (s->srce[s->prev]) ff_dlog(ctx, "set_work_frame_pts() srce prev pts:%"PRId64"\n", s->srce[s->prev]->pts); average_srce_pts_delta = s->average_srce_pts_dest_delta; ff_dlog(ctx, "set_work_frame_pts() initial average srce pts:%"PRId64"\n", average_srce_pts_delta); set_srce_frame_dest_pts(ctx); // calculate the PTS delta if ((pts = (s->srce_pts_dest[s->next] - s->srce_pts_dest[s->crnt]))) { average_srce_pts_delta = average_srce_pts_delta?((average_srce_pts_delta+pts)>>1):pts; } else if (s->srce[s->prev] && (pts = (s->srce_pts_dest[s->crnt] - s->srce_pts_dest[s->prev]))) { average_srce_pts_delta = average_srce_pts_delta?((average_srce_pts_delta+pts)>>1):pts; } s->average_srce_pts_dest_delta = average_srce_pts_delta; ff_dlog(ctx, "set_work_frame_pts() average srce pts:%"PRId64"\n", average_srce_pts_delta); ff_dlog(ctx, "set_work_frame_pts() average srce pts:%"PRId64" at dest time base:%u/%u\n", s->average_srce_pts_dest_delta, s->dest_time_base.num, s->dest_time_base.den); if (ctx->inputs[0] && !s->average_dest_pts_delta) { int64_t d = av_q2d(av_inv_q(av_mul_q(s->dest_time_base, s->dest_frame_rate))); s->average_dest_pts_delta = d; ff_dlog(ctx, "set_work_frame_pts() average dest pts delta:%"PRId64"\n", s->average_dest_pts_delta); } if (!s->dest_frame_num) { s->pts = s->last_dest_frame_pts = s->srce_pts_dest[s->crnt]; } else { s->pts = s->last_dest_frame_pts + s->average_dest_pts_delta; } ff_dlog(ctx, "set_work_frame_pts() calculated pts:%"PRId64" at dest time base:%u/%u\n", s->pts, s->dest_time_base.num, s->dest_time_base.den); } static av_cold int init(AVFilterContext *ctx) { FrameRateContext *s = ctx->priv; s->dest_frame_num = 0; s->crnt = (N_SRCE)>>1; s->last = N_SRCE - 1; s->next = s->crnt - 1; s->prev = s->crnt + 1; return 0; } static av_cold void uninit(AVFilterContext *ctx) { FrameRateContext *s = ctx->priv; int i; for (i = s->frst; i < s->last; i++) { if (s->srce[i] && (s->srce[i] != s->srce[i + 1])) av_frame_free(&s->srce[i]); } av_frame_free(&s->srce[s->last]); } static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_NONE }; AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); if (!fmts_list) return AVERROR(ENOMEM); return ff_set_common_formats(ctx, fmts_list); } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; FrameRateContext *s = ctx->priv; const AVPixFmtDescriptor *pix_desc = av_pix_fmt_desc_get(inlink->format); int plane; for (plane = 0; plane < 4; plane++) { s->line_size[plane] = av_image_get_linesize(inlink->format, inlink->w, plane); } s->bitdepth = pix_desc->comp[0].depth; s->vsub = pix_desc->log2_chroma_h; s->sad = av_pixelutils_get_sad_fn(3, 3, 2, s); // 8x8 both sources aligned if (!s->sad) return AVERROR(EINVAL); s->srce_time_base = inlink->time_base; if (s->bitdepth == 8) s->blend_frames = blend_frames8; else s->blend_frames = blend_frames16; s->max = 1 << (s->bitdepth); return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *inpicref) { int ret; AVFilterContext *ctx = inlink->dst; FrameRateContext *s = ctx->priv; // we have one new frame s->pending_srce_frames++; if (inpicref->interlaced_frame) av_log(ctx, AV_LOG_WARNING, "Interlaced frame found - the output will not be correct.\n"); // store the pointer to the new frame av_frame_free(&s->srce[s->frst]); s->srce[s->frst] = inpicref; if (!s->pending_end_frame && s->srce[s->crnt]) { set_work_frame_pts(ctx); s->pending_end_frame = 1; } else { set_srce_frame_dest_pts(ctx); } ret = process_work_frame(ctx, 1); if (ret < 0) return ret; return ret ? ff_filter_frame(ctx->outputs[0], s->work) : 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; FrameRateContext *s = ctx->priv; int exact; ff_dlog(ctx, "config_output()\n"); ff_dlog(ctx, "config_output() input time base:%u/%u (%f)\n", ctx->inputs[0]->time_base.num,ctx->inputs[0]->time_base.den, av_q2d(ctx->inputs[0]->time_base)); // make sure timebase is small enough to hold the framerate exact = av_reduce(&s->dest_time_base.num, &s->dest_time_base.den, av_gcd((int64_t)s->srce_time_base.num * s->dest_frame_rate.num, (int64_t)s->srce_time_base.den * s->dest_frame_rate.den ), (int64_t)s->srce_time_base.den * s->dest_frame_rate.num, INT_MAX); av_log(ctx, AV_LOG_INFO, "time base:%u/%u -> %u/%u exact:%d\n", s->srce_time_base.num, s->srce_time_base.den, s->dest_time_base.num, s->dest_time_base.den, exact); if (!exact) { av_log(ctx, AV_LOG_WARNING, "Timebase conversion is not exact\n"); } outlink->frame_rate = s->dest_frame_rate; outlink->time_base = s->dest_time_base; ff_dlog(ctx, "config_output() output time base:%u/%u (%f) w:%d h:%d\n", outlink->time_base.num, outlink->time_base.den, av_q2d(outlink->time_base), outlink->w, outlink->h); av_log(ctx, AV_LOG_INFO, "fps -> fps:%u/%u scene score:%f interpolate start:%d end:%d\n", s->dest_frame_rate.num, s->dest_frame_rate.den, s->scene_score, s->interp_start, s->interp_end); return 0; } static int request_frame(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; FrameRateContext *s = ctx->priv; int ret, i; ff_dlog(ctx, "request_frame()\n"); // if there is no "next" frame AND we are not in flush then get one from our input filter if (!s->srce[s->frst] && !s->flush) goto request; ff_dlog(ctx, "request_frame() REPEAT or FLUSH\n"); if (s->pending_srce_frames <= 0) { ff_dlog(ctx, "request_frame() nothing else to do, return:EOF\n"); return AVERROR_EOF; } // otherwise, make brand-new frame and pass to our output filter ff_dlog(ctx, "request_frame() FLUSH\n"); // back fill at end of file when source has no more frames for (i = s->last; i > s->frst; i--) { if (!s->srce[i - 1] && s->srce[i]) { ff_dlog(ctx, "request_frame() copy:%d to:%d\n", i, i - 1); s->srce[i - 1] = s->srce[i]; } } set_work_frame_pts(ctx); ret = process_work_frame(ctx, 0); if (ret < 0) return ret; if (ret) return ff_filter_frame(ctx->outputs[0], s->work); request: ff_dlog(ctx, "request_frame() call source's request_frame()\n"); ret = ff_request_frame(ctx->inputs[0]); if (ret < 0 && (ret != AVERROR_EOF)) { ff_dlog(ctx, "request_frame() source's request_frame() returned error:%d\n", ret); return ret; } else if (ret == AVERROR_EOF) { s->flush = 1; } ff_dlog(ctx, "request_frame() source's request_frame() returned:%d\n", ret); return 0; } static const AVFilterPad framerate_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input, .filter_frame = filter_frame, }, { NULL } }; static const AVFilterPad framerate_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .request_frame = request_frame, .config_props = config_output, }, { NULL } }; AVFilter ff_vf_framerate = { .name = "framerate", .description = NULL_IF_CONFIG_SMALL("Upsamples or downsamples progressive source between specified frame rates."), .priv_size = sizeof(FrameRateContext), .priv_class = &framerate_class, .init = init, .uninit = uninit, .query_formats = query_formats, .inputs = framerate_inputs, .outputs = framerate_outputs, };