/* * Copyright (C) 2012 Mark Himsley * * get_scene_score() Copyright (c) 2011 Stefano Sabatini * taken from libavfilter/vf_select.c * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * filter for upsampling or downsampling a progressive source */ #define DEBUG #include "libavutil/avassert.h" #include "libavutil/imgutils.h" #include "libavutil/internal.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "libavutil/pixelutils.h" #include "avfilter.h" #include "internal.h" #include "video.h" #include "framerate.h" #define OFFSET(x) offsetof(FrameRateContext, x) #define V AV_OPT_FLAG_VIDEO_PARAM #define F AV_OPT_FLAG_FILTERING_PARAM #define FRAMERATE_FLAG_SCD 01 static const AVOption framerate_options[] = { {"fps", "required output frames per second rate", OFFSET(dest_frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str="50"}, 0, INT_MAX, V|F }, {"interp_start", "point to start linear interpolation", OFFSET(interp_start), AV_OPT_TYPE_INT, {.i64=15}, 0, 255, V|F }, {"interp_end", "point to end linear interpolation", OFFSET(interp_end), AV_OPT_TYPE_INT, {.i64=240}, 0, 255, V|F }, {"scene", "scene change level", OFFSET(scene_score), AV_OPT_TYPE_DOUBLE, {.dbl=8.2}, 0, INT_MAX, V|F }, {"flags", "set flags", OFFSET(flags), AV_OPT_TYPE_FLAGS, {.i64=1}, 0, INT_MAX, V|F, "flags" }, {"scene_change_detect", "enable scene change detection", 0, AV_OPT_TYPE_CONST, {.i64=FRAMERATE_FLAG_SCD}, INT_MIN, INT_MAX, V|F, "flags" }, {"scd", "enable scene change detection", 0, AV_OPT_TYPE_CONST, {.i64=FRAMERATE_FLAG_SCD}, INT_MIN, INT_MAX, V|F, "flags" }, {NULL} }; AVFILTER_DEFINE_CLASS(framerate); static av_always_inline int64_t sad_8x8_16(const uint16_t *src1, ptrdiff_t stride1, const uint16_t *src2, ptrdiff_t stride2) { int sum = 0; int x, y; for (y = 0; y < 8; y++) { for (x = 0; x < 8; x++) sum += FFABS(src1[x] - src2[x]); src1 += stride1; src2 += stride2; } return sum; } static int64_t scene_sad16(FrameRateContext *s, const uint16_t *p1, int p1_linesize, const uint16_t* p2, int p2_linesize, const int width, const int height) { int64_t sad; int x, y; for (sad = y = 0; y < height - 7; y += 8) { for (x = 0; x < width - 7; x += 8) { sad += sad_8x8_16(p1 + y * p1_linesize + x, p1_linesize, p2 + y * p2_linesize + x, p2_linesize); } } return sad; } static int64_t scene_sad8(FrameRateContext *s, uint8_t *p1, int p1_linesize, uint8_t* p2, int p2_linesize, const int width, const int height) { int64_t sad; int x, y; for (sad = y = 0; y < height - 7; y += 8) { for (x = 0; x < width - 7; x += 8) { sad += s->sad(p1 + y * p1_linesize + x, p1_linesize, p2 + y * p2_linesize + x, p2_linesize); } } emms_c(); return sad; } static double get_scene_score(AVFilterContext *ctx, AVFrame *crnt, AVFrame *next) { FrameRateContext *s = ctx->priv; double ret = 0; ff_dlog(ctx, "get_scene_score()\n"); if (crnt->height == next->height && crnt->width == next->width) { int64_t sad; double mafd, diff; ff_dlog(ctx, "get_scene_score() process\n"); if (s->bitdepth == 8) sad = scene_sad8(s, crnt->data[0], crnt->linesize[0], next->data[0], next->linesize[0], crnt->width, crnt->height); else sad = scene_sad16(s, (const uint16_t*)crnt->data[0], crnt->linesize[0] / 2, (const uint16_t*)next->data[0], next->linesize[0] / 2, crnt->width, crnt->height); mafd = (double)sad * 100.0 / FFMAX(1, (crnt->height & ~7) * (crnt->width & ~7)) / (1 << s->bitdepth); diff = fabs(mafd - s->prev_mafd); ret = av_clipf(FFMIN(mafd, diff), 0, 100.0); s->prev_mafd = mafd; } ff_dlog(ctx, "get_scene_score() result is:%f\n", ret); return ret; } typedef struct ThreadData { AVFrame *copy_src1, *copy_src2; uint16_t src1_factor, src2_factor; } ThreadData; static int filter_slice(AVFilterContext *ctx, void *arg, int job, int nb_jobs) { FrameRateContext *s = ctx->priv; ThreadData *td = arg; uint16_t src1_factor = td->src1_factor; uint16_t src2_factor = td->src2_factor; int plane; for (plane = 0; plane < 4 && td->copy_src1->data[plane] && td->copy_src2->data[plane]; plane++) { int cpy_line_width = s->line_size[plane]; uint8_t *cpy_src1_data = td->copy_src1->data[plane]; int cpy_src1_line_size = td->copy_src1->linesize[plane]; uint8_t *cpy_src2_data = td->copy_src2->data[plane]; int cpy_src2_line_size = td->copy_src2->linesize[plane]; int cpy_src_h = (plane > 0 && plane < 3) ? (td->copy_src1->height >> s->vsub) : (td->copy_src1->height); uint8_t *cpy_dst_data = s->work->data[plane]; int cpy_dst_line_size = s->work->linesize[plane]; const int start = (cpy_src_h * job ) / nb_jobs; const int end = (cpy_src_h * (job+1)) / nb_jobs; cpy_src1_data += start * cpy_src1_line_size; cpy_src2_data += start * cpy_src2_line_size; cpy_dst_data += start * cpy_dst_line_size; s->blend(cpy_src1_data, cpy_src1_line_size, cpy_src2_data, cpy_src2_line_size, cpy_dst_data, cpy_dst_line_size, cpy_line_width, end - start, src1_factor, src2_factor, s->blend_factor_max >> 1); } return 0; } static int blend_frames(AVFilterContext *ctx, int interpolate) { FrameRateContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; double interpolate_scene_score = 0; if ((s->flags & FRAMERATE_FLAG_SCD)) { if (s->score >= 0.0) interpolate_scene_score = s->score; else interpolate_scene_score = s->score = get_scene_score(ctx, s->f0, s->f1); ff_dlog(ctx, "blend_frames() interpolate scene score:%f\n", interpolate_scene_score); } // decide if the shot-change detection allows us to blend two frames if (interpolate_scene_score < s->scene_score) { ThreadData td; td.copy_src1 = s->f0; td.copy_src2 = s->f1; td.src2_factor = interpolate; td.src1_factor = s->blend_factor_max - td.src2_factor; // get work-space for output frame s->work = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!s->work) return AVERROR(ENOMEM); av_frame_copy_props(s->work, s->f0); ff_dlog(ctx, "blend_frames() INTERPOLATE to create work frame\n"); ctx->internal->execute(ctx, filter_slice, &td, NULL, FFMIN(FFMAX(1, outlink->h >> 2), ff_filter_get_nb_threads(ctx))); return 1; } return 0; } static int process_work_frame(AVFilterContext *ctx) { FrameRateContext *s = ctx->priv; int64_t work_pts; int64_t interpolate, interpolate8; int ret; if (!s->f1) return 0; if (!s->f0 && !s->flush) return 0; work_pts = s->start_pts + av_rescale_q(s->n, av_inv_q(s->dest_frame_rate), s->dest_time_base); if (work_pts >= s->pts1 && !s->flush) return 0; if (!s->f0) { s->work = av_frame_clone(s->f1); } else { if (work_pts >= s->pts1 + s->delta && s->flush) return 0; interpolate = av_rescale(work_pts - s->pts0, s->blend_factor_max, s->delta); interpolate8 = av_rescale(work_pts - s->pts0, 256, s->delta); ff_dlog(ctx, "process_work_frame() interpolate: %"PRId64"/256\n", interpolate8); if (interpolate >= s->blend_factor_max || interpolate8 > s->interp_end) { s->work = av_frame_clone(s->f1); } else if (interpolate <= 0 || interpolate8 < s->interp_start) { s->work = av_frame_clone(s->f0); } else { ret = blend_frames(ctx, interpolate); if (ret < 0) return ret; if (ret == 0) s->work = av_frame_clone(interpolate > (s->blend_factor_max >> 1) ? s->f1 : s->f0); } } if (!s->work) return AVERROR(ENOMEM); s->work->pts = work_pts; s->n++; return 1; } static av_cold int init(AVFilterContext *ctx) { FrameRateContext *s = ctx->priv; s->start_pts = AV_NOPTS_VALUE; return 0; } static av_cold void uninit(AVFilterContext *ctx) { FrameRateContext *s = ctx->priv; av_frame_free(&s->f0); av_frame_free(&s->f1); } static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_NONE }; AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); if (!fmts_list) return AVERROR(ENOMEM); return ff_set_common_formats(ctx, fmts_list); } static void blend_frames_c(BLEND_FUNC_PARAMS) { int line, pixel; for (line = 0; line < height; line++) { for (pixel = 0; pixel < width; pixel++) dst[pixel] = ((src1[pixel] * factor1) + (src2[pixel] * factor2) + half) >> BLEND_FACTOR_DEPTH8; src1 += src1_linesize; src2 += src2_linesize; dst += dst_linesize; } } static void blend_frames16_c(BLEND_FUNC_PARAMS) { int line, pixel; uint16_t *dstw = (uint16_t *)dst; uint16_t *src1w = (uint16_t *)src1; uint16_t *src2w = (uint16_t *)src2; width /= 2; src1_linesize /= 2; src2_linesize /= 2; dst_linesize /= 2; for (line = 0; line < height; line++) { for (pixel = 0; pixel < width; pixel++) dstw[pixel] = ((src1w[pixel] * factor1) + (src2w[pixel] * factor2) + half) >> BLEND_FACTOR_DEPTH16; src1w += src1_linesize; src2w += src2_linesize; dstw += dst_linesize; } } void ff_framerate_init(FrameRateContext *s) { if (s->bitdepth == 8) { s->blend_factor_max = 1 << BLEND_FACTOR_DEPTH8; s->blend = blend_frames_c; } else { s->blend_factor_max = 1 << BLEND_FACTOR_DEPTH16; s->blend = blend_frames16_c; } if (ARCH_X86) ff_framerate_init_x86(s); } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; FrameRateContext *s = ctx->priv; const AVPixFmtDescriptor *pix_desc = av_pix_fmt_desc_get(inlink->format); int plane; for (plane = 0; plane < 4; plane++) { s->line_size[plane] = av_image_get_linesize(inlink->format, inlink->w, plane); } s->bitdepth = pix_desc->comp[0].depth; s->vsub = pix_desc->log2_chroma_h; s->sad = av_pixelutils_get_sad_fn(3, 3, 2, s); // 8x8 both sources aligned if (!s->sad) return AVERROR(EINVAL); s->srce_time_base = inlink->time_base; ff_framerate_init(s); return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *inpicref) { int ret; AVFilterContext *ctx = inlink->dst; FrameRateContext *s = ctx->priv; int64_t pts; if (inpicref->interlaced_frame) av_log(ctx, AV_LOG_WARNING, "Interlaced frame found - the output will not be correct.\n"); if (inpicref->pts == AV_NOPTS_VALUE) { av_log(ctx, AV_LOG_WARNING, "Ignoring frame without PTS.\n"); return 0; } pts = av_rescale_q(inpicref->pts, s->srce_time_base, s->dest_time_base); if (s->f1 && pts == s->pts1) { av_log(ctx, AV_LOG_WARNING, "Ignoring frame with same PTS.\n"); return 0; } av_frame_free(&s->f0); s->f0 = s->f1; s->pts0 = s->pts1; s->f1 = inpicref; s->pts1 = pts; s->delta = s->pts1 - s->pts0; s->score = -1.0; if (s->delta < 0) { av_log(ctx, AV_LOG_WARNING, "PTS discontinuity.\n"); s->start_pts = s->pts1; s->n = 0; av_frame_free(&s->f0); } if (s->start_pts == AV_NOPTS_VALUE) s->start_pts = s->pts1; do { ret = process_work_frame(ctx); if (ret <= 0) return ret; ret = ff_filter_frame(ctx->outputs[0], s->work); } while (ret >= 0); return ret; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; FrameRateContext *s = ctx->priv; int exact; ff_dlog(ctx, "config_output()\n"); ff_dlog(ctx, "config_output() input time base:%u/%u (%f)\n", ctx->inputs[0]->time_base.num,ctx->inputs[0]->time_base.den, av_q2d(ctx->inputs[0]->time_base)); // make sure timebase is small enough to hold the framerate exact = av_reduce(&s->dest_time_base.num, &s->dest_time_base.den, av_gcd((int64_t)s->srce_time_base.num * s->dest_frame_rate.num, (int64_t)s->srce_time_base.den * s->dest_frame_rate.den ), (int64_t)s->srce_time_base.den * s->dest_frame_rate.num, INT_MAX); av_log(ctx, AV_LOG_INFO, "time base:%u/%u -> %u/%u exact:%d\n", s->srce_time_base.num, s->srce_time_base.den, s->dest_time_base.num, s->dest_time_base.den, exact); if (!exact) { av_log(ctx, AV_LOG_WARNING, "Timebase conversion is not exact\n"); } outlink->frame_rate = s->dest_frame_rate; outlink->time_base = s->dest_time_base; ff_dlog(ctx, "config_output() output time base:%u/%u (%f) w:%d h:%d\n", outlink->time_base.num, outlink->time_base.den, av_q2d(outlink->time_base), outlink->w, outlink->h); av_log(ctx, AV_LOG_INFO, "fps -> fps:%u/%u scene score:%f interpolate start:%d end:%d\n", s->dest_frame_rate.num, s->dest_frame_rate.den, s->scene_score, s->interp_start, s->interp_end); return 0; } static int request_frame(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; FrameRateContext *s = ctx->priv; int ret; ff_dlog(ctx, "request_frame()\n"); ret = ff_request_frame(ctx->inputs[0]); if (ret == AVERROR_EOF && s->f1 && !s->flush) { s->flush = 1; ret = process_work_frame(ctx); if (ret < 0) return ret; ret = ret ? ff_filter_frame(ctx->outputs[0], s->work) : AVERROR_EOF; } ff_dlog(ctx, "request_frame() source's request_frame() returned:%d\n", ret); return ret; } static const AVFilterPad framerate_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input, .filter_frame = filter_frame, }, { NULL } }; static const AVFilterPad framerate_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .request_frame = request_frame, .config_props = config_output, }, { NULL } }; AVFilter ff_vf_framerate = { .name = "framerate", .description = NULL_IF_CONFIG_SMALL("Upsamples or downsamples progressive source between specified frame rates."), .priv_size = sizeof(FrameRateContext), .priv_class = &framerate_class, .init = init, .uninit = uninit, .query_formats = query_formats, .inputs = framerate_inputs, .outputs = framerate_outputs, .flags = AVFILTER_FLAG_SLICE_THREADS, };