/* * Copyright (c) 2017 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * An arbitrary audio FIR filter */ #include "libavutil/audio_fifo.h" #include "libavutil/common.h" #include "libavutil/float_dsp.h" #include "libavutil/opt.h" #include "libavcodec/avfft.h" #include "audio.h" #include "avfilter.h" #include "formats.h" #include "internal.h" #include "af_afir.h" static void fcmul_add_c(float *sum, const float *t, const float *c, ptrdiff_t len) { int n; for (n = 0; n < len; n++) { const float cre = c[2 * n ]; const float cim = c[2 * n + 1]; const float tre = t[2 * n ]; const float tim = t[2 * n + 1]; sum[2 * n ] += tre * cre - tim * cim; sum[2 * n + 1] += tre * cim + tim * cre; } sum[2 * n] += t[2 * n] * c[2 * n]; } static int fir_channel(AVFilterContext *ctx, void *arg, int ch, int nb_jobs) { AudioFIRContext *s = ctx->priv; const float *src = (const float *)s->in[0]->extended_data[ch]; int index1 = (s->index + 1) % 3; int index2 = (s->index + 2) % 3; float *sum = s->sum[ch]; AVFrame *out = arg; float *block; float *dst; int n, i, j; memset(sum, 0, sizeof(*sum) * s->fft_length); block = s->block[ch] + s->part_index * s->block_size; memset(block, 0, sizeof(*block) * s->fft_length); s->fdsp->vector_fmul_scalar(block + s->part_size, src, s->dry_gain, FFALIGN(s->nb_samples, 4)); emms_c(); av_rdft_calc(s->rdft[ch], block); block[2 * s->part_size] = block[1]; block[1] = 0; j = s->part_index; for (i = 0; i < s->nb_partitions; i++) { const int coffset = i * s->coeff_size; const FFTComplex *coeff = s->coeff[ch * !s->one2many] + coffset; block = s->block[ch] + j * s->block_size; s->fcmul_add(sum, block, (const float *)coeff, s->part_size); if (j == 0) j = s->nb_partitions; j--; } sum[1] = sum[2 * s->part_size]; av_rdft_calc(s->irdft[ch], sum); dst = (float *)s->buffer->extended_data[ch] + index1 * s->part_size; for (n = 0; n < s->part_size; n++) { dst[n] += sum[n]; } dst = (float *)s->buffer->extended_data[ch] + index2 * s->part_size; memcpy(dst, sum + s->part_size, s->part_size * sizeof(*dst)); dst = (float *)s->buffer->extended_data[ch] + s->index * s->part_size; if (out) { float *ptr = (float *)out->extended_data[ch]; s->fdsp->vector_fmul_scalar(ptr, dst, s->wet_gain, FFALIGN(out->nb_samples, 4)); emms_c(); } return 0; } static int fir_frame(AudioFIRContext *s, AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AVFrame *out = NULL; int ret; s->nb_samples = FFMIN(s->part_size, av_audio_fifo_size(s->fifo[0])); if (!s->want_skip) { out = ff_get_audio_buffer(outlink, s->nb_samples); if (!out) return AVERROR(ENOMEM); } s->in[0] = ff_get_audio_buffer(ctx->inputs[0], s->nb_samples); if (!s->in[0]) { av_frame_free(&out); return AVERROR(ENOMEM); } av_audio_fifo_peek(s->fifo[0], (void **)s->in[0]->extended_data, s->nb_samples); ctx->internal->execute(ctx, fir_channel, out, NULL, outlink->channels); s->part_index = (s->part_index + 1) % s->nb_partitions; av_audio_fifo_drain(s->fifo[0], s->nb_samples); if (!s->want_skip) { out->pts = s->pts; if (s->pts != AV_NOPTS_VALUE) s->pts += av_rescale_q(out->nb_samples, (AVRational){1, outlink->sample_rate}, outlink->time_base); } s->index++; if (s->index == 3) s->index = 0; av_frame_free(&s->in[0]); if (s->want_skip == 1) { s->want_skip = 0; ret = 0; } else { ret = ff_filter_frame(outlink, out); } return ret; } static int convert_coeffs(AVFilterContext *ctx) { AudioFIRContext *s = ctx->priv; int i, ch, n, N; s->nb_taps = av_audio_fifo_size(s->fifo[1]); if (s->nb_taps <= 0) return AVERROR(EINVAL); for (n = 4; (1 << n) < s->nb_taps; n++); N = FFMIN(n, 16); s->ir_length = 1 << n; s->fft_length = (1 << (N + 1)) + 1; s->part_size = 1 << (N - 1); s->block_size = FFALIGN(s->fft_length, 32); s->coeff_size = FFALIGN(s->part_size + 1, 32); s->nb_partitions = (s->nb_taps + s->part_size - 1) / s->part_size; s->nb_coeffs = s->ir_length + s->nb_partitions; for (ch = 0; ch < ctx->inputs[0]->channels; ch++) { s->sum[ch] = av_calloc(s->fft_length, sizeof(**s->sum)); if (!s->sum[ch]) return AVERROR(ENOMEM); } for (ch = 0; ch < ctx->inputs[1]->channels; ch++) { s->coeff[ch] = av_calloc(s->nb_partitions * s->coeff_size, sizeof(**s->coeff)); if (!s->coeff[ch]) return AVERROR(ENOMEM); } for (ch = 0; ch < ctx->inputs[0]->channels; ch++) { s->block[ch] = av_calloc(s->nb_partitions * s->block_size, sizeof(**s->block)); if (!s->block[ch]) return AVERROR(ENOMEM); } for (ch = 0; ch < ctx->inputs[0]->channels; ch++) { s->rdft[ch] = av_rdft_init(N, DFT_R2C); s->irdft[ch] = av_rdft_init(N, IDFT_C2R); if (!s->rdft[ch] || !s->irdft[ch]) return AVERROR(ENOMEM); } s->in[1] = ff_get_audio_buffer(ctx->inputs[1], s->nb_taps); if (!s->in[1]) return AVERROR(ENOMEM); s->buffer = ff_get_audio_buffer(ctx->inputs[0], s->part_size * 3); if (!s->buffer) return AVERROR(ENOMEM); av_audio_fifo_read(s->fifo[1], (void **)s->in[1]->extended_data, s->nb_taps); if (s->again) { float power = 0; for (ch = 0; ch < ctx->inputs[1]->channels; ch++) { float *time = (float *)s->in[1]->extended_data[!s->one2many * ch]; for (i = 0; i < s->nb_taps; i++) power += FFABS(time[i]); } s->gain = sqrtf(1.f / (ctx->inputs[1]->channels * power)) / (sqrtf(ctx->inputs[1]->channels)); for (ch = 0; ch < ctx->inputs[1]->channels; ch++) { float *time = (float *)s->in[1]->extended_data[!s->one2many * ch]; s->fdsp->vector_fmul_scalar(time, time, s->gain, FFALIGN(s->nb_taps, 4)); } } for (ch = 0; ch < ctx->inputs[1]->channels; ch++) { float *time = (float *)s->in[1]->extended_data[!s->one2many * ch]; float *block = s->block[ch]; FFTComplex *coeff = s->coeff[ch]; for (i = FFMAX(1, s->length * s->nb_taps); i < s->nb_taps; i++) time[i] = 0; for (i = 0; i < s->nb_partitions; i++) { const float scale = 1.f / s->part_size; const int toffset = i * s->part_size; const int coffset = i * s->coeff_size; const int boffset = s->part_size; const int remaining = s->nb_taps - (i * s->part_size); const int size = remaining >= s->part_size ? s->part_size : remaining; memset(block, 0, sizeof(*block) * s->fft_length); memcpy(block + boffset, time + toffset, size * sizeof(*block)); av_rdft_calc(s->rdft[0], block); coeff[coffset].re = block[0] * scale; coeff[coffset].im = 0; for (n = 1; n < s->part_size; n++) { coeff[coffset + n].re = block[2 * n] * scale; coeff[coffset + n].im = block[2 * n + 1] * scale; } coeff[coffset + s->part_size].re = block[1] * scale; coeff[coffset + s->part_size].im = 0; } } av_frame_free(&s->in[1]); av_log(ctx, AV_LOG_DEBUG, "nb_taps: %d\n", s->nb_taps); av_log(ctx, AV_LOG_DEBUG, "nb_partitions: %d\n", s->nb_partitions); av_log(ctx, AV_LOG_DEBUG, "partition size: %d\n", s->part_size); av_log(ctx, AV_LOG_DEBUG, "ir_length: %d\n", s->ir_length); s->have_coeffs = 1; return 0; } static int read_ir(AVFilterLink *link, AVFrame *frame) { AVFilterContext *ctx = link->dst; AudioFIRContext *s = ctx->priv; int nb_taps, max_nb_taps, ret; ret = av_audio_fifo_write(s->fifo[1], (void **)frame->extended_data, frame->nb_samples); av_frame_free(&frame); if (ret < 0) return ret; nb_taps = av_audio_fifo_size(s->fifo[1]); max_nb_taps = MAX_IR_DURATION * ctx->outputs[0]->sample_rate; if (nb_taps > max_nb_taps) { av_log(ctx, AV_LOG_ERROR, "Too big number of coefficients: %d > %d.\n", nb_taps, max_nb_taps); return AVERROR(EINVAL); } return 0; } static int filter_frame(AVFilterLink *link, AVFrame *frame) { AVFilterContext *ctx = link->dst; AudioFIRContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; int ret; ret = av_audio_fifo_write(s->fifo[0], (void **)frame->extended_data, frame->nb_samples); if (ret > 0 && s->pts == AV_NOPTS_VALUE) s->pts = frame->pts; av_frame_free(&frame); if (ret < 0) return ret; if (!s->have_coeffs && s->eof_coeffs) { ret = convert_coeffs(ctx); if (ret < 0) return ret; } if (s->have_coeffs) { while (av_audio_fifo_size(s->fifo[0]) >= s->part_size) { ret = fir_frame(s, outlink); if (ret < 0) return ret; } } return 0; } static int request_frame(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AudioFIRContext *s = ctx->priv; int ret; if (!s->eof_coeffs) { ret = ff_request_frame(ctx->inputs[1]); if (ret == AVERROR_EOF) { s->eof_coeffs = 1; ret = 0; } return ret; } ret = ff_request_frame(ctx->inputs[0]); if (ret == AVERROR_EOF && s->have_coeffs) { if (s->need_padding) { AVFrame *silence = ff_get_audio_buffer(outlink, s->part_size); if (!silence) return AVERROR(ENOMEM); ret = av_audio_fifo_write(s->fifo[0], (void **)silence->extended_data, silence->nb_samples); av_frame_free(&silence); if (ret < 0) return ret; s->need_padding = 0; } while (av_audio_fifo_size(s->fifo[0]) > 0) { ret = fir_frame(s, outlink); if (ret < 0) return ret; } ret = AVERROR_EOF; } return ret; } static int query_formats(AVFilterContext *ctx) { AVFilterFormats *formats; AVFilterChannelLayouts *layouts; static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE }; int ret, i; layouts = ff_all_channel_counts(); if ((ret = ff_channel_layouts_ref(layouts, &ctx->outputs[0]->in_channel_layouts)) < 0) return ret; for (i = 0; i < 2; i++) { layouts = ff_all_channel_counts(); if ((ret = ff_channel_layouts_ref(layouts, &ctx->inputs[i]->out_channel_layouts)) < 0) return ret; } formats = ff_make_format_list(sample_fmts); if ((ret = ff_set_common_formats(ctx, formats)) < 0) return ret; formats = ff_all_samplerates(); return ff_set_common_samplerates(ctx, formats); } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AudioFIRContext *s = ctx->priv; if (ctx->inputs[0]->channels != ctx->inputs[1]->channels && ctx->inputs[1]->channels != 1) { av_log(ctx, AV_LOG_ERROR, "Second input must have same number of channels as first input or " "exactly 1 channel.\n"); return AVERROR(EINVAL); } s->one2many = ctx->inputs[1]->channels == 1; outlink->sample_rate = ctx->inputs[0]->sample_rate; outlink->time_base = ctx->inputs[0]->time_base; outlink->channel_layout = ctx->inputs[0]->channel_layout; outlink->channels = ctx->inputs[0]->channels; s->fifo[0] = av_audio_fifo_alloc(ctx->inputs[0]->format, ctx->inputs[0]->channels, 1024); s->fifo[1] = av_audio_fifo_alloc(ctx->inputs[1]->format, ctx->inputs[1]->channels, 1024); if (!s->fifo[0] || !s->fifo[1]) return AVERROR(ENOMEM); s->sum = av_calloc(outlink->channels, sizeof(*s->sum)); s->coeff = av_calloc(ctx->inputs[1]->channels, sizeof(*s->coeff)); s->block = av_calloc(ctx->inputs[0]->channels, sizeof(*s->block)); s->rdft = av_calloc(outlink->channels, sizeof(*s->rdft)); s->irdft = av_calloc(outlink->channels, sizeof(*s->irdft)); if (!s->sum || !s->coeff || !s->block || !s->rdft || !s->irdft) return AVERROR(ENOMEM); s->nb_channels = outlink->channels; s->nb_coef_channels = ctx->inputs[1]->channels; s->want_skip = 1; s->need_padding = 1; s->pts = AV_NOPTS_VALUE; return 0; } static av_cold void uninit(AVFilterContext *ctx) { AudioFIRContext *s = ctx->priv; int ch; if (s->sum) { for (ch = 0; ch < s->nb_channels; ch++) { av_freep(&s->sum[ch]); } } av_freep(&s->sum); if (s->coeff) { for (ch = 0; ch < s->nb_coef_channels; ch++) { av_freep(&s->coeff[ch]); } } av_freep(&s->coeff); if (s->block) { for (ch = 0; ch < s->nb_channels; ch++) { av_freep(&s->block[ch]); } } av_freep(&s->block); if (s->rdft) { for (ch = 0; ch < s->nb_channels; ch++) { av_rdft_end(s->rdft[ch]); } } av_freep(&s->rdft); if (s->irdft) { for (ch = 0; ch < s->nb_channels; ch++) { av_rdft_end(s->irdft[ch]); } } av_freep(&s->irdft); av_frame_free(&s->in[0]); av_frame_free(&s->in[1]); av_frame_free(&s->buffer); av_audio_fifo_free(s->fifo[0]); av_audio_fifo_free(s->fifo[1]); av_freep(&s->fdsp); } static av_cold int init(AVFilterContext *ctx) { AudioFIRContext *s = ctx->priv; s->fcmul_add = fcmul_add_c; s->fdsp = avpriv_float_dsp_alloc(0); if (!s->fdsp) return AVERROR(ENOMEM); if (ARCH_X86) ff_afir_init_x86(s); return 0; } static const AVFilterPad afir_inputs[] = { { .name = "main", .type = AVMEDIA_TYPE_AUDIO, .filter_frame = filter_frame, },{ .name = "ir", .type = AVMEDIA_TYPE_AUDIO, .filter_frame = read_ir, }, { NULL } }; static const AVFilterPad afir_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_output, .request_frame = request_frame, }, { NULL } }; #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM #define OFFSET(x) offsetof(AudioFIRContext, x) static const AVOption afir_options[] = { { "dry", "set dry gain", OFFSET(dry_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF }, { "wet", "set wet gain", OFFSET(wet_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF }, { "length", "set IR length", OFFSET(length), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF }, { "again", "enable auto gain", OFFSET(again), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, AF }, { NULL } }; AVFILTER_DEFINE_CLASS(afir); AVFilter ff_af_afir = { .name = "afir", .description = NULL_IF_CONFIG_SMALL("Apply Finite Impulse Response filter with supplied coefficients in 2nd stream."), .priv_size = sizeof(AudioFIRContext), .priv_class = &afir_class, .query_formats = query_formats, .init = init, .uninit = uninit, .inputs = afir_inputs, .outputs = afir_outputs, .flags = AVFILTER_FLAG_SLICE_THREADS, };