/* * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "config.h" #include "pixdesc.h" #include "avstring.h" #include "imgutils.h" #include "hwcontext.h" #include "hwcontext_internal.h" #include "hwcontext_vulkan.h" #if CONFIG_LIBDRM #include #include #include #include "hwcontext_drm.h" #if CONFIG_VAAPI #include #include "hwcontext_vaapi.h" #endif #endif #if CONFIG_CUDA #include "hwcontext_cuda_internal.h" #include "cuda_check.h" #define CHECK_CU(x) FF_CUDA_CHECK_DL(cuda_cu, cu, x) #endif typedef struct VulkanQueueCtx { VkFence fence; VkQueue queue; int was_synchronous; /* Buffer dependencies */ AVBufferRef **buf_deps; int nb_buf_deps; int buf_deps_alloc_size; } VulkanQueueCtx; typedef struct VulkanExecCtx { VkCommandPool pool; VkCommandBuffer *bufs; VulkanQueueCtx *queues; int nb_queues; int cur_queue_idx; } VulkanExecCtx; typedef struct VulkanDevicePriv { /* Properties */ VkPhysicalDeviceProperties2 props; VkPhysicalDeviceMemoryProperties mprops; VkPhysicalDeviceExternalMemoryHostPropertiesEXT hprops; /* Queues */ uint32_t qfs[3]; int num_qfs; /* Debug callback */ VkDebugUtilsMessengerEXT debug_ctx; /* Extensions */ uint64_t extensions; /* Settings */ int use_linear_images; /* Nvidia */ int dev_is_nvidia; } VulkanDevicePriv; typedef struct VulkanFramesPriv { /* Image conversions */ VulkanExecCtx conv_ctx; /* Image transfers */ VulkanExecCtx upload_ctx; VulkanExecCtx download_ctx; } VulkanFramesPriv; typedef struct AVVkFrameInternal { #if CONFIG_CUDA /* Importing external memory into cuda is really expensive so we keep the * memory imported all the time */ AVBufferRef *cuda_fc_ref; /* Need to keep it around for uninit */ CUexternalMemory ext_mem[AV_NUM_DATA_POINTERS]; CUmipmappedArray cu_mma[AV_NUM_DATA_POINTERS]; CUarray cu_array[AV_NUM_DATA_POINTERS]; CUexternalSemaphore cu_sem[AV_NUM_DATA_POINTERS]; #endif } AVVkFrameInternal; #define GET_QUEUE_COUNT(hwctx, graph, comp, tx) ( \ graph ? hwctx->nb_graphics_queues : \ comp ? (hwctx->nb_comp_queues ? \ hwctx->nb_comp_queues : hwctx->nb_graphics_queues) : \ tx ? (hwctx->nb_tx_queues ? hwctx->nb_tx_queues : \ (hwctx->nb_comp_queues ? \ hwctx->nb_comp_queues : hwctx->nb_graphics_queues)) : \ 0 \ ) #define VK_LOAD_PFN(inst, name) PFN_##name pfn_##name = (PFN_##name) \ vkGetInstanceProcAddr(inst, #name) #define DEFAULT_USAGE_FLAGS (VK_IMAGE_USAGE_SAMPLED_BIT | \ VK_IMAGE_USAGE_STORAGE_BIT | \ VK_IMAGE_USAGE_TRANSFER_SRC_BIT | \ VK_IMAGE_USAGE_TRANSFER_DST_BIT) #define ADD_VAL_TO_LIST(list, count, val) \ do { \ list = av_realloc_array(list, sizeof(*list), ++count); \ if (!list) { \ err = AVERROR(ENOMEM); \ goto fail; \ } \ list[count - 1] = av_strdup(val); \ if (!list[count - 1]) { \ err = AVERROR(ENOMEM); \ goto fail; \ } \ } while(0) static const struct { enum AVPixelFormat pixfmt; const VkFormat vkfmts[3]; } vk_pixfmt_map[] = { { AV_PIX_FMT_GRAY8, { VK_FORMAT_R8_UNORM } }, { AV_PIX_FMT_GRAY16, { VK_FORMAT_R16_UNORM } }, { AV_PIX_FMT_GRAYF32, { VK_FORMAT_R32_SFLOAT } }, { AV_PIX_FMT_NV12, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8G8_UNORM } }, { AV_PIX_FMT_P010, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } }, { AV_PIX_FMT_P016, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } }, { AV_PIX_FMT_YUV420P, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM } }, { AV_PIX_FMT_YUV422P, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM } }, { AV_PIX_FMT_YUV444P, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM } }, { AV_PIX_FMT_YUV420P16, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } }, { AV_PIX_FMT_YUV422P16, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } }, { AV_PIX_FMT_YUV444P16, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } }, { AV_PIX_FMT_ABGR, { VK_FORMAT_A8B8G8R8_UNORM_PACK32 } }, { AV_PIX_FMT_BGRA, { VK_FORMAT_B8G8R8A8_UNORM } }, { AV_PIX_FMT_RGBA, { VK_FORMAT_R8G8B8A8_UNORM } }, { AV_PIX_FMT_RGB24, { VK_FORMAT_R8G8B8_UNORM } }, { AV_PIX_FMT_BGR24, { VK_FORMAT_B8G8R8_UNORM } }, { AV_PIX_FMT_RGB48, { VK_FORMAT_R16G16B16_UNORM } }, { AV_PIX_FMT_RGBA64, { VK_FORMAT_R16G16B16A16_UNORM } }, { AV_PIX_FMT_RGB565, { VK_FORMAT_R5G6B5_UNORM_PACK16 } }, { AV_PIX_FMT_BGR565, { VK_FORMAT_B5G6R5_UNORM_PACK16 } }, { AV_PIX_FMT_BGR0, { VK_FORMAT_B8G8R8A8_UNORM } }, { AV_PIX_FMT_0BGR, { VK_FORMAT_A8B8G8R8_UNORM_PACK32 } }, { AV_PIX_FMT_RGB0, { VK_FORMAT_R8G8B8A8_UNORM } }, { AV_PIX_FMT_GBRPF32, { VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT } }, }; const VkFormat *av_vkfmt_from_pixfmt(enum AVPixelFormat p) { for (enum AVPixelFormat i = 0; i < FF_ARRAY_ELEMS(vk_pixfmt_map); i++) if (vk_pixfmt_map[i].pixfmt == p) return vk_pixfmt_map[i].vkfmts; return NULL; } static int pixfmt_is_supported(AVVulkanDeviceContext *hwctx, enum AVPixelFormat p, int linear) { const VkFormat *fmt = av_vkfmt_from_pixfmt(p); int planes = av_pix_fmt_count_planes(p); if (!fmt) return 0; for (int i = 0; i < planes; i++) { VkFormatFeatureFlags flags; VkFormatProperties2 prop = { .sType = VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2, }; vkGetPhysicalDeviceFormatProperties2(hwctx->phys_dev, fmt[i], &prop); flags = linear ? prop.formatProperties.linearTilingFeatures : prop.formatProperties.optimalTilingFeatures; if (!(flags & DEFAULT_USAGE_FLAGS)) return 0; } return 1; } enum VulkanExtensions { EXT_EXTERNAL_DMABUF_MEMORY = 1ULL << 0, /* VK_EXT_external_memory_dma_buf */ EXT_DRM_MODIFIER_FLAGS = 1ULL << 1, /* VK_EXT_image_drm_format_modifier */ EXT_EXTERNAL_FD_MEMORY = 1ULL << 2, /* VK_KHR_external_memory_fd */ EXT_EXTERNAL_FD_SEM = 1ULL << 3, /* VK_KHR_external_semaphore_fd */ EXT_EXTERNAL_HOST_MEMORY = 1ULL << 4, /* VK_EXT_external_memory_host */ EXT_NO_FLAG = 1ULL << 63, }; typedef struct VulkanOptExtension { const char *name; uint64_t flag; } VulkanOptExtension; static const VulkanOptExtension optional_instance_exts[] = { /* For future use */ }; static const VulkanOptExtension optional_device_exts[] = { { VK_KHR_EXTERNAL_MEMORY_FD_EXTENSION_NAME, EXT_EXTERNAL_FD_MEMORY, }, { VK_EXT_EXTERNAL_MEMORY_DMA_BUF_EXTENSION_NAME, EXT_EXTERNAL_DMABUF_MEMORY, }, { VK_EXT_IMAGE_DRM_FORMAT_MODIFIER_EXTENSION_NAME, EXT_DRM_MODIFIER_FLAGS, }, { VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME, EXT_EXTERNAL_FD_SEM, }, { VK_EXT_EXTERNAL_MEMORY_HOST_EXTENSION_NAME, EXT_EXTERNAL_HOST_MEMORY, }, }; /* Converts return values to strings */ static const char *vk_ret2str(VkResult res) { #define CASE(VAL) case VAL: return #VAL switch (res) { CASE(VK_SUCCESS); CASE(VK_NOT_READY); CASE(VK_TIMEOUT); CASE(VK_EVENT_SET); CASE(VK_EVENT_RESET); CASE(VK_INCOMPLETE); CASE(VK_ERROR_OUT_OF_HOST_MEMORY); CASE(VK_ERROR_OUT_OF_DEVICE_MEMORY); CASE(VK_ERROR_INITIALIZATION_FAILED); CASE(VK_ERROR_DEVICE_LOST); CASE(VK_ERROR_MEMORY_MAP_FAILED); CASE(VK_ERROR_LAYER_NOT_PRESENT); CASE(VK_ERROR_EXTENSION_NOT_PRESENT); CASE(VK_ERROR_FEATURE_NOT_PRESENT); CASE(VK_ERROR_INCOMPATIBLE_DRIVER); CASE(VK_ERROR_TOO_MANY_OBJECTS); CASE(VK_ERROR_FORMAT_NOT_SUPPORTED); CASE(VK_ERROR_FRAGMENTED_POOL); CASE(VK_ERROR_SURFACE_LOST_KHR); CASE(VK_ERROR_NATIVE_WINDOW_IN_USE_KHR); CASE(VK_SUBOPTIMAL_KHR); CASE(VK_ERROR_OUT_OF_DATE_KHR); CASE(VK_ERROR_INCOMPATIBLE_DISPLAY_KHR); CASE(VK_ERROR_VALIDATION_FAILED_EXT); CASE(VK_ERROR_INVALID_SHADER_NV); CASE(VK_ERROR_OUT_OF_POOL_MEMORY); CASE(VK_ERROR_INVALID_EXTERNAL_HANDLE); CASE(VK_ERROR_NOT_PERMITTED_EXT); CASE(VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT); CASE(VK_ERROR_INVALID_DEVICE_ADDRESS_EXT); CASE(VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT); default: return "Unknown error"; } #undef CASE } static VkBool32 vk_dbg_callback(VkDebugUtilsMessageSeverityFlagBitsEXT severity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT *data, void *priv) { int l; AVHWDeviceContext *ctx = priv; switch (severity) { case VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT: l = AV_LOG_VERBOSE; break; case VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT: l = AV_LOG_INFO; break; case VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT: l = AV_LOG_WARNING; break; case VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT: l = AV_LOG_ERROR; break; default: l = AV_LOG_DEBUG; break; } av_log(ctx, l, "%s\n", data->pMessage); for (int i = 0; i < data->cmdBufLabelCount; i++) av_log(ctx, l, "\t%i: %s\n", i, data->pCmdBufLabels[i].pLabelName); return 0; } static int check_extensions(AVHWDeviceContext *ctx, int dev, AVDictionary *opts, const char * const **dst, uint32_t *num, int debug) { const char *tstr; const char **extension_names = NULL; VulkanDevicePriv *p = ctx->internal->priv; AVVulkanDeviceContext *hwctx = ctx->hwctx; int err = 0, found, extensions_found = 0; const char *mod; int optional_exts_num; uint32_t sup_ext_count; char *user_exts_str = NULL; AVDictionaryEntry *user_exts; VkExtensionProperties *sup_ext; const VulkanOptExtension *optional_exts; if (!dev) { mod = "instance"; optional_exts = optional_instance_exts; optional_exts_num = FF_ARRAY_ELEMS(optional_instance_exts); user_exts = av_dict_get(opts, "instance_extensions", NULL, 0); if (user_exts) { user_exts_str = av_strdup(user_exts->value); if (!user_exts_str) { err = AVERROR(ENOMEM); goto fail; } } vkEnumerateInstanceExtensionProperties(NULL, &sup_ext_count, NULL); sup_ext = av_malloc_array(sup_ext_count, sizeof(VkExtensionProperties)); if (!sup_ext) return AVERROR(ENOMEM); vkEnumerateInstanceExtensionProperties(NULL, &sup_ext_count, sup_ext); } else { mod = "device"; optional_exts = optional_device_exts; optional_exts_num = FF_ARRAY_ELEMS(optional_device_exts); user_exts = av_dict_get(opts, "device_extensions", NULL, 0); if (user_exts) { user_exts_str = av_strdup(user_exts->value); if (!user_exts_str) { err = AVERROR(ENOMEM); goto fail; } } vkEnumerateDeviceExtensionProperties(hwctx->phys_dev, NULL, &sup_ext_count, NULL); sup_ext = av_malloc_array(sup_ext_count, sizeof(VkExtensionProperties)); if (!sup_ext) return AVERROR(ENOMEM); vkEnumerateDeviceExtensionProperties(hwctx->phys_dev, NULL, &sup_ext_count, sup_ext); } for (int i = 0; i < optional_exts_num; i++) { tstr = optional_exts[i].name; found = 0; for (int j = 0; j < sup_ext_count; j++) { if (!strcmp(tstr, sup_ext[j].extensionName)) { found = 1; break; } } if (!found) continue; av_log(ctx, AV_LOG_VERBOSE, "Using %s extension \"%s\"\n", mod, tstr); p->extensions |= optional_exts[i].flag; ADD_VAL_TO_LIST(extension_names, extensions_found, tstr); } if (debug && !dev) { tstr = VK_EXT_DEBUG_UTILS_EXTENSION_NAME; found = 0; for (int j = 0; j < sup_ext_count; j++) { if (!strcmp(tstr, sup_ext[j].extensionName)) { found = 1; break; } } if (found) { av_log(ctx, AV_LOG_VERBOSE, "Using %s extension \"%s\"\n", mod, tstr); ADD_VAL_TO_LIST(extension_names, extensions_found, tstr); } else { av_log(ctx, AV_LOG_ERROR, "Debug extension \"%s\" not found!\n", tstr); err = AVERROR(EINVAL); goto fail; } } if (user_exts_str) { char *save, *token = av_strtok(user_exts_str, "+", &save); while (token) { found = 0; for (int j = 0; j < sup_ext_count; j++) { if (!strcmp(token, sup_ext[j].extensionName)) { found = 1; break; } } if (found) { av_log(ctx, AV_LOG_VERBOSE, "Using %s extension \"%s\"\n", mod, token); ADD_VAL_TO_LIST(extension_names, extensions_found, token); } else { av_log(ctx, AV_LOG_WARNING, "%s extension \"%s\" not found, excluding.\n", mod, token); } token = av_strtok(NULL, "+", &save); } } *dst = extension_names; *num = extensions_found; av_free(user_exts_str); av_free(sup_ext); return 0; fail: if (extension_names) for (int i = 0; i < extensions_found; i++) av_free((void *)extension_names[i]); av_free(extension_names); av_free(user_exts_str); av_free(sup_ext); return err; } /* Creates a VkInstance */ static int create_instance(AVHWDeviceContext *ctx, AVDictionary *opts) { int err = 0; VkResult ret; VulkanDevicePriv *p = ctx->internal->priv; AVVulkanDeviceContext *hwctx = ctx->hwctx; AVDictionaryEntry *debug_opt = av_dict_get(opts, "debug", NULL, 0); const int debug_mode = debug_opt && strtol(debug_opt->value, NULL, 10); VkApplicationInfo application_info = { .sType = VK_STRUCTURE_TYPE_APPLICATION_INFO, .pEngineName = "libavutil", .apiVersion = VK_API_VERSION_1_1, .engineVersion = VK_MAKE_VERSION(LIBAVUTIL_VERSION_MAJOR, LIBAVUTIL_VERSION_MINOR, LIBAVUTIL_VERSION_MICRO), }; VkInstanceCreateInfo inst_props = { .sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, .pApplicationInfo = &application_info, }; /* Check for present/missing extensions */ err = check_extensions(ctx, 0, opts, &inst_props.ppEnabledExtensionNames, &inst_props.enabledExtensionCount, debug_mode); if (err < 0) return err; if (debug_mode) { static const char *layers[] = { "VK_LAYER_KHRONOS_validation" }; inst_props.ppEnabledLayerNames = layers; inst_props.enabledLayerCount = FF_ARRAY_ELEMS(layers); } /* Try to create the instance */ ret = vkCreateInstance(&inst_props, hwctx->alloc, &hwctx->inst); /* Check for errors */ if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Instance creation failure: %s\n", vk_ret2str(ret)); for (int i = 0; i < inst_props.enabledExtensionCount; i++) av_free((void *)inst_props.ppEnabledExtensionNames[i]); av_free((void *)inst_props.ppEnabledExtensionNames); return AVERROR_EXTERNAL; } if (debug_mode) { VkDebugUtilsMessengerCreateInfoEXT dbg = { .sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT, .messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT, .messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT, .pfnUserCallback = vk_dbg_callback, .pUserData = ctx, }; VK_LOAD_PFN(hwctx->inst, vkCreateDebugUtilsMessengerEXT); pfn_vkCreateDebugUtilsMessengerEXT(hwctx->inst, &dbg, hwctx->alloc, &p->debug_ctx); } hwctx->enabled_inst_extensions = inst_props.ppEnabledExtensionNames; hwctx->nb_enabled_inst_extensions = inst_props.enabledExtensionCount; return 0; } typedef struct VulkanDeviceSelection { uint8_t uuid[VK_UUID_SIZE]; /* Will use this first unless !has_uuid */ int has_uuid; const char *name; /* Will use this second unless NULL */ uint32_t pci_device; /* Will use this third unless 0x0 */ uint32_t vendor_id; /* Last resort to find something deterministic */ int index; /* Finally fall back to index */ } VulkanDeviceSelection; static const char *vk_dev_type(enum VkPhysicalDeviceType type) { switch (type) { case VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU: return "integrated"; case VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU: return "discrete"; case VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU: return "virtual"; case VK_PHYSICAL_DEVICE_TYPE_CPU: return "software"; default: return "unknown"; } } /* Finds a device */ static int find_device(AVHWDeviceContext *ctx, VulkanDeviceSelection *select) { int err = 0, choice = -1; uint32_t num; VkResult ret; VkPhysicalDevice *devices = NULL; VkPhysicalDeviceIDProperties *idp = NULL; VkPhysicalDeviceProperties2 *prop = NULL; AVVulkanDeviceContext *hwctx = ctx->hwctx; ret = vkEnumeratePhysicalDevices(hwctx->inst, &num, NULL); if (ret != VK_SUCCESS || !num) { av_log(ctx, AV_LOG_ERROR, "No devices found: %s!\n", vk_ret2str(ret)); return AVERROR(ENODEV); } devices = av_malloc_array(num, sizeof(VkPhysicalDevice)); if (!devices) return AVERROR(ENOMEM); ret = vkEnumeratePhysicalDevices(hwctx->inst, &num, devices); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Failed enumerating devices: %s\n", vk_ret2str(ret)); err = AVERROR(ENODEV); goto end; } prop = av_mallocz_array(num, sizeof(*prop)); if (!prop) { err = AVERROR(ENOMEM); goto end; } idp = av_mallocz_array(num, sizeof(*idp)); if (!idp) { err = AVERROR(ENOMEM); goto end; } av_log(ctx, AV_LOG_VERBOSE, "GPU listing:\n"); for (int i = 0; i < num; i++) { idp[i].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES; prop[i].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2; prop[i].pNext = &idp[i]; vkGetPhysicalDeviceProperties2(devices[i], &prop[i]); av_log(ctx, AV_LOG_VERBOSE, " %d: %s (%s) (0x%x)\n", i, prop[i].properties.deviceName, vk_dev_type(prop[i].properties.deviceType), prop[i].properties.deviceID); } if (select->has_uuid) { for (int i = 0; i < num; i++) { if (!strncmp(idp[i].deviceUUID, select->uuid, VK_UUID_SIZE)) { choice = i; goto end; } } av_log(ctx, AV_LOG_ERROR, "Unable to find device by given UUID!\n"); err = AVERROR(ENODEV); goto end; } else if (select->name) { av_log(ctx, AV_LOG_VERBOSE, "Requested device: %s\n", select->name); for (int i = 0; i < num; i++) { if (strstr(prop[i].properties.deviceName, select->name)) { choice = i; goto end; } } av_log(ctx, AV_LOG_ERROR, "Unable to find device \"%s\"!\n", select->name); err = AVERROR(ENODEV); goto end; } else if (select->pci_device) { av_log(ctx, AV_LOG_VERBOSE, "Requested device: 0x%x\n", select->pci_device); for (int i = 0; i < num; i++) { if (select->pci_device == prop[i].properties.deviceID) { choice = i; goto end; } } av_log(ctx, AV_LOG_ERROR, "Unable to find device with PCI ID 0x%x!\n", select->pci_device); err = AVERROR(EINVAL); goto end; } else if (select->vendor_id) { av_log(ctx, AV_LOG_VERBOSE, "Requested vendor: 0x%x\n", select->vendor_id); for (int i = 0; i < num; i++) { if (select->vendor_id == prop[i].properties.vendorID) { choice = i; goto end; } } av_log(ctx, AV_LOG_ERROR, "Unable to find device with Vendor ID 0x%x!\n", select->vendor_id); err = AVERROR(ENODEV); goto end; } else { if (select->index < num) { choice = select->index; goto end; } av_log(ctx, AV_LOG_ERROR, "Unable to find device with index %i!\n", select->index); err = AVERROR(ENODEV); goto end; } end: if (choice > -1) hwctx->phys_dev = devices[choice]; av_free(devices); av_free(prop); av_free(idp); return err; } static int search_queue_families(AVHWDeviceContext *ctx, VkDeviceCreateInfo *cd) { uint32_t num; float *weights; VkQueueFamilyProperties *qs = NULL; AVVulkanDeviceContext *hwctx = ctx->hwctx; int graph_index = -1, comp_index = -1, tx_index = -1; VkDeviceQueueCreateInfo *pc = (VkDeviceQueueCreateInfo *)cd->pQueueCreateInfos; /* First get the number of queue families */ vkGetPhysicalDeviceQueueFamilyProperties(hwctx->phys_dev, &num, NULL); if (!num) { av_log(ctx, AV_LOG_ERROR, "Failed to get queues!\n"); return AVERROR_EXTERNAL; } /* Then allocate memory */ qs = av_malloc_array(num, sizeof(VkQueueFamilyProperties)); if (!qs) return AVERROR(ENOMEM); /* Finally retrieve the queue families */ vkGetPhysicalDeviceQueueFamilyProperties(hwctx->phys_dev, &num, qs); #define SEARCH_FLAGS(expr, out) \ for (int i = 0; i < num; i++) { \ const VkQueueFlagBits flags = qs[i].queueFlags; \ if (expr) { \ out = i; \ break; \ } \ } SEARCH_FLAGS(flags & VK_QUEUE_GRAPHICS_BIT, graph_index) SEARCH_FLAGS((flags & VK_QUEUE_COMPUTE_BIT) && (i != graph_index), comp_index) SEARCH_FLAGS((flags & VK_QUEUE_TRANSFER_BIT) && (i != graph_index) && (i != comp_index), tx_index) #undef SEARCH_FLAGS #define ADD_QUEUE(fidx, graph, comp, tx) \ av_log(ctx, AV_LOG_VERBOSE, "Using queue family %i (total queues: %i) for %s%s%s\n", \ fidx, qs[fidx].queueCount, graph ? "graphics " : "", \ comp ? "compute " : "", tx ? "transfers " : ""); \ av_log(ctx, AV_LOG_VERBOSE, " QF %i flags: %s%s%s%s\n", fidx, \ ((qs[fidx].queueFlags) & VK_QUEUE_GRAPHICS_BIT) ? "(graphics) " : "", \ ((qs[fidx].queueFlags) & VK_QUEUE_COMPUTE_BIT) ? "(compute) " : "", \ ((qs[fidx].queueFlags) & VK_QUEUE_TRANSFER_BIT) ? "(transfers) " : "", \ ((qs[fidx].queueFlags) & VK_QUEUE_SPARSE_BINDING_BIT) ? "(sparse) " : ""); \ pc[cd->queueCreateInfoCount].queueFamilyIndex = fidx; \ pc[cd->queueCreateInfoCount].queueCount = qs[fidx].queueCount; \ weights = av_malloc(qs[fidx].queueCount * sizeof(float)); \ pc[cd->queueCreateInfoCount].pQueuePriorities = weights; \ if (!weights) \ goto fail; \ for (int i = 0; i < qs[fidx].queueCount; i++) \ weights[i] = 1.0f; \ cd->queueCreateInfoCount++; ADD_QUEUE(graph_index, 1, comp_index < 0, tx_index < 0 && comp_index < 0) hwctx->queue_family_index = graph_index; hwctx->queue_family_comp_index = graph_index; hwctx->queue_family_tx_index = graph_index; hwctx->nb_graphics_queues = qs[graph_index].queueCount; if (comp_index != -1) { ADD_QUEUE(comp_index, 0, 1, tx_index < 0) hwctx->queue_family_tx_index = comp_index; hwctx->queue_family_comp_index = comp_index; hwctx->nb_comp_queues = qs[comp_index].queueCount; } if (tx_index != -1) { ADD_QUEUE(tx_index, 0, 0, 1) hwctx->queue_family_tx_index = tx_index; hwctx->nb_tx_queues = qs[tx_index].queueCount; } #undef ADD_QUEUE av_free(qs); return 0; fail: av_freep(&pc[0].pQueuePriorities); av_freep(&pc[1].pQueuePriorities); av_freep(&pc[2].pQueuePriorities); av_free(qs); return AVERROR(ENOMEM); } static int create_exec_ctx(AVHWFramesContext *hwfc, VulkanExecCtx *cmd, int queue_family_index, int num_queues) { VkResult ret; AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx; VkCommandPoolCreateInfo cqueue_create = { .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, .flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT, .queueFamilyIndex = queue_family_index, }; VkCommandBufferAllocateInfo cbuf_create = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandBufferCount = num_queues, }; cmd->nb_queues = num_queues; cmd->queues = av_mallocz(num_queues * sizeof(*cmd->queues)); if (!cmd->queues) return AVERROR(ENOMEM); cmd->bufs = av_mallocz(num_queues * sizeof(*cmd->bufs)); if (!cmd->bufs) return AVERROR(ENOMEM); /* Create command pool */ ret = vkCreateCommandPool(hwctx->act_dev, &cqueue_create, hwctx->alloc, &cmd->pool); if (ret != VK_SUCCESS) { av_log(hwfc, AV_LOG_ERROR, "Command pool creation failure: %s\n", vk_ret2str(ret)); return AVERROR_EXTERNAL; } cbuf_create.commandPool = cmd->pool; /* Allocate command buffer */ ret = vkAllocateCommandBuffers(hwctx->act_dev, &cbuf_create, cmd->bufs); if (ret != VK_SUCCESS) { av_log(hwfc, AV_LOG_ERROR, "Command buffer alloc failure: %s\n", vk_ret2str(ret)); return AVERROR_EXTERNAL; } for (int i = 0; i < num_queues; i++) { VulkanQueueCtx *q = &cmd->queues[i]; vkGetDeviceQueue(hwctx->act_dev, queue_family_index, i, &q->queue); q->was_synchronous = 1; } return 0; } static void free_exec_ctx(AVHWFramesContext *hwfc, VulkanExecCtx *cmd) { AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx; /* Make sure all queues have finished executing */ for (int i = 0; i < cmd->nb_queues; i++) { VulkanQueueCtx *q = &cmd->queues[i]; if (q->fence && !q->was_synchronous) { vkWaitForFences(hwctx->act_dev, 1, &q->fence, VK_TRUE, UINT64_MAX); vkResetFences(hwctx->act_dev, 1, &q->fence); } /* Free the fence */ if (q->fence) vkDestroyFence(hwctx->act_dev, q->fence, hwctx->alloc); /* Free buffer dependencies */ for (int j = 0; j < q->nb_buf_deps; j++) av_buffer_unref(&q->buf_deps[j]); av_free(q->buf_deps); } if (cmd->bufs) vkFreeCommandBuffers(hwctx->act_dev, cmd->pool, cmd->nb_queues, cmd->bufs); if (cmd->pool) vkDestroyCommandPool(hwctx->act_dev, cmd->pool, hwctx->alloc); av_freep(&cmd->bufs); av_freep(&cmd->queues); } static VkCommandBuffer get_buf_exec_ctx(AVHWFramesContext *hwfc, VulkanExecCtx *cmd) { return cmd->bufs[cmd->cur_queue_idx]; } static void unref_exec_ctx_deps(AVHWFramesContext *hwfc, VulkanExecCtx *cmd) { VulkanQueueCtx *q = &cmd->queues[cmd->cur_queue_idx]; for (int j = 0; j < q->nb_buf_deps; j++) av_buffer_unref(&q->buf_deps[j]); q->nb_buf_deps = 0; } static int wait_start_exec_ctx(AVHWFramesContext *hwfc, VulkanExecCtx *cmd) { VkResult ret; AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx; VulkanQueueCtx *q = &cmd->queues[cmd->cur_queue_idx]; VkCommandBufferBeginInfo cmd_start = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, .flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, }; /* Create the fence and don't wait for it initially */ if (!q->fence) { VkFenceCreateInfo fence_spawn = { .sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, }; ret = vkCreateFence(hwctx->act_dev, &fence_spawn, hwctx->alloc, &q->fence); if (ret != VK_SUCCESS) { av_log(hwfc, AV_LOG_ERROR, "Failed to queue frame fence: %s\n", vk_ret2str(ret)); return AVERROR_EXTERNAL; } } else if (!q->was_synchronous) { vkWaitForFences(hwctx->act_dev, 1, &q->fence, VK_TRUE, UINT64_MAX); vkResetFences(hwctx->act_dev, 1, &q->fence); } /* Discard queue dependencies */ unref_exec_ctx_deps(hwfc, cmd); ret = vkBeginCommandBuffer(cmd->bufs[cmd->cur_queue_idx], &cmd_start); if (ret != VK_SUCCESS) { av_log(hwfc, AV_LOG_ERROR, "Unable to init command buffer: %s\n", vk_ret2str(ret)); return AVERROR_EXTERNAL; } return 0; } static int add_buf_dep_exec_ctx(AVHWFramesContext *hwfc, VulkanExecCtx *cmd, AVBufferRef * const *deps, int nb_deps) { AVBufferRef **dst; VulkanQueueCtx *q = &cmd->queues[cmd->cur_queue_idx]; if (!deps || !nb_deps) return 0; dst = av_fast_realloc(q->buf_deps, &q->buf_deps_alloc_size, (q->nb_buf_deps + nb_deps) * sizeof(*dst)); if (!dst) goto err; q->buf_deps = dst; for (int i = 0; i < nb_deps; i++) { q->buf_deps[q->nb_buf_deps] = av_buffer_ref(deps[i]); if (!q->buf_deps[q->nb_buf_deps]) goto err; q->nb_buf_deps++; } return 0; err: unref_exec_ctx_deps(hwfc, cmd); return AVERROR(ENOMEM); } static int submit_exec_ctx(AVHWFramesContext *hwfc, VulkanExecCtx *cmd, VkSubmitInfo *s_info, int synchronous) { VkResult ret; VulkanQueueCtx *q = &cmd->queues[cmd->cur_queue_idx]; ret = vkEndCommandBuffer(cmd->bufs[cmd->cur_queue_idx]); if (ret != VK_SUCCESS) { av_log(hwfc, AV_LOG_ERROR, "Unable to finish command buffer: %s\n", vk_ret2str(ret)); unref_exec_ctx_deps(hwfc, cmd); return AVERROR_EXTERNAL; } s_info->pCommandBuffers = &cmd->bufs[cmd->cur_queue_idx]; s_info->commandBufferCount = 1; ret = vkQueueSubmit(q->queue, 1, s_info, q->fence); if (ret != VK_SUCCESS) { unref_exec_ctx_deps(hwfc, cmd); return AVERROR_EXTERNAL; } q->was_synchronous = synchronous; if (synchronous) { AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx; vkWaitForFences(hwctx->act_dev, 1, &q->fence, VK_TRUE, UINT64_MAX); vkResetFences(hwctx->act_dev, 1, &q->fence); unref_exec_ctx_deps(hwfc, cmd); } else { /* Rotate queues */ cmd->cur_queue_idx = (cmd->cur_queue_idx + 1) % cmd->nb_queues; } return 0; } static void vulkan_device_free(AVHWDeviceContext *ctx) { VulkanDevicePriv *p = ctx->internal->priv; AVVulkanDeviceContext *hwctx = ctx->hwctx; vkDestroyDevice(hwctx->act_dev, hwctx->alloc); if (p->debug_ctx) { VK_LOAD_PFN(hwctx->inst, vkDestroyDebugUtilsMessengerEXT); pfn_vkDestroyDebugUtilsMessengerEXT(hwctx->inst, p->debug_ctx, hwctx->alloc); } vkDestroyInstance(hwctx->inst, hwctx->alloc); for (int i = 0; i < hwctx->nb_enabled_inst_extensions; i++) av_free((void *)hwctx->enabled_inst_extensions[i]); av_free((void *)hwctx->enabled_inst_extensions); for (int i = 0; i < hwctx->nb_enabled_dev_extensions; i++) av_free((void *)hwctx->enabled_dev_extensions[i]); av_free((void *)hwctx->enabled_dev_extensions); } static int vulkan_device_create_internal(AVHWDeviceContext *ctx, VulkanDeviceSelection *dev_select, AVDictionary *opts, int flags) { int err = 0; VkResult ret; AVDictionaryEntry *opt_d; VulkanDevicePriv *p = ctx->internal->priv; AVVulkanDeviceContext *hwctx = ctx->hwctx; VkPhysicalDeviceFeatures dev_features = { 0 }; VkDeviceQueueCreateInfo queue_create_info[3] = { { .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, }, { .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, }, { .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, }, }; VkDeviceCreateInfo dev_info = { .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, .pNext = &hwctx->device_features, .pQueueCreateInfos = queue_create_info, .queueCreateInfoCount = 0, }; hwctx->device_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2; ctx->free = vulkan_device_free; /* Create an instance if not given one */ if ((err = create_instance(ctx, opts))) goto end; /* Find a device (if not given one) */ if ((err = find_device(ctx, dev_select))) goto end; vkGetPhysicalDeviceFeatures(hwctx->phys_dev, &dev_features); #define COPY_FEATURE(DST, NAME) (DST).features.NAME = dev_features.NAME; COPY_FEATURE(hwctx->device_features, shaderImageGatherExtended) COPY_FEATURE(hwctx->device_features, fragmentStoresAndAtomics) COPY_FEATURE(hwctx->device_features, vertexPipelineStoresAndAtomics) COPY_FEATURE(hwctx->device_features, shaderInt64) #undef COPY_FEATURE /* Search queue family */ if ((err = search_queue_families(ctx, &dev_info))) goto end; if ((err = check_extensions(ctx, 1, opts, &dev_info.ppEnabledExtensionNames, &dev_info.enabledExtensionCount, 0))) { av_free((void *)queue_create_info[0].pQueuePriorities); av_free((void *)queue_create_info[1].pQueuePriorities); av_free((void *)queue_create_info[2].pQueuePriorities); goto end; } ret = vkCreateDevice(hwctx->phys_dev, &dev_info, hwctx->alloc, &hwctx->act_dev); av_free((void *)queue_create_info[0].pQueuePriorities); av_free((void *)queue_create_info[1].pQueuePriorities); av_free((void *)queue_create_info[2].pQueuePriorities); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Device creation failure: %s\n", vk_ret2str(ret)); for (int i = 0; i < dev_info.enabledExtensionCount; i++) av_free((void *)dev_info.ppEnabledExtensionNames[i]); av_free((void *)dev_info.ppEnabledExtensionNames); err = AVERROR_EXTERNAL; goto end; } /* Tiled images setting, use them by default */ opt_d = av_dict_get(opts, "linear_images", NULL, 0); if (opt_d) p->use_linear_images = strtol(opt_d->value, NULL, 10); hwctx->enabled_dev_extensions = dev_info.ppEnabledExtensionNames; hwctx->nb_enabled_dev_extensions = dev_info.enabledExtensionCount; end: return err; } static int vulkan_device_init(AVHWDeviceContext *ctx) { uint32_t queue_num; AVVulkanDeviceContext *hwctx = ctx->hwctx; VulkanDevicePriv *p = ctx->internal->priv; /* Set device extension flags */ for (int i = 0; i < hwctx->nb_enabled_dev_extensions; i++) { for (int j = 0; j < FF_ARRAY_ELEMS(optional_device_exts); j++) { if (!strcmp(hwctx->enabled_dev_extensions[i], optional_device_exts[j].name)) { av_log(ctx, AV_LOG_VERBOSE, "Using device extension %s\n", hwctx->enabled_dev_extensions[i]); p->extensions |= optional_device_exts[j].flag; break; } } } p->props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2; p->props.pNext = &p->hprops; p->hprops.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT; vkGetPhysicalDeviceProperties2(hwctx->phys_dev, &p->props); av_log(ctx, AV_LOG_VERBOSE, "Using device: %s\n", p->props.properties.deviceName); av_log(ctx, AV_LOG_VERBOSE, "Alignments:\n"); av_log(ctx, AV_LOG_VERBOSE, " optimalBufferCopyRowPitchAlignment: %li\n", p->props.properties.limits.optimalBufferCopyRowPitchAlignment); av_log(ctx, AV_LOG_VERBOSE, " minMemoryMapAlignment: %li\n", p->props.properties.limits.minMemoryMapAlignment); if (p->extensions & EXT_EXTERNAL_HOST_MEMORY) av_log(ctx, AV_LOG_VERBOSE, " minImportedHostPointerAlignment: %li\n", p->hprops.minImportedHostPointerAlignment); p->dev_is_nvidia = (p->props.properties.vendorID == 0x10de); vkGetPhysicalDeviceQueueFamilyProperties(hwctx->phys_dev, &queue_num, NULL); if (!queue_num) { av_log(ctx, AV_LOG_ERROR, "Failed to get queues!\n"); return AVERROR_EXTERNAL; } #define CHECK_QUEUE(type, n) \ if (n >= queue_num) { \ av_log(ctx, AV_LOG_ERROR, "Invalid %s queue index %i (device has %i queues)!\n", \ type, n, queue_num); \ return AVERROR(EINVAL); \ } CHECK_QUEUE("graphics", hwctx->queue_family_index) CHECK_QUEUE("upload", hwctx->queue_family_tx_index) CHECK_QUEUE("compute", hwctx->queue_family_comp_index) #undef CHECK_QUEUE p->qfs[p->num_qfs++] = hwctx->queue_family_index; if ((hwctx->queue_family_tx_index != hwctx->queue_family_index) && (hwctx->queue_family_tx_index != hwctx->queue_family_comp_index)) p->qfs[p->num_qfs++] = hwctx->queue_family_tx_index; if ((hwctx->queue_family_comp_index != hwctx->queue_family_index) && (hwctx->queue_family_comp_index != hwctx->queue_family_tx_index)) p->qfs[p->num_qfs++] = hwctx->queue_family_comp_index; /* Get device capabilities */ vkGetPhysicalDeviceMemoryProperties(hwctx->phys_dev, &p->mprops); return 0; } static int vulkan_device_create(AVHWDeviceContext *ctx, const char *device, AVDictionary *opts, int flags) { VulkanDeviceSelection dev_select = { 0 }; if (device && device[0]) { char *end = NULL; dev_select.index = strtol(device, &end, 10); if (end == device) { dev_select.index = 0; dev_select.name = device; } } return vulkan_device_create_internal(ctx, &dev_select, opts, flags); } static int vulkan_device_derive(AVHWDeviceContext *ctx, AVHWDeviceContext *src_ctx, AVDictionary *opts, int flags) { av_unused VulkanDeviceSelection dev_select = { 0 }; /* If there's only one device on the system, then even if its not covered * by the following checks (e.g. non-PCIe ARM GPU), having an empty * dev_select will mean it'll get picked. */ switch(src_ctx->type) { #if CONFIG_LIBDRM #if CONFIG_VAAPI case AV_HWDEVICE_TYPE_VAAPI: { AVVAAPIDeviceContext *src_hwctx = src_ctx->hwctx; const char *vendor = vaQueryVendorString(src_hwctx->display); if (!vendor) { av_log(ctx, AV_LOG_ERROR, "Unable to get device info from VAAPI!\n"); return AVERROR_EXTERNAL; } if (strstr(vendor, "Intel")) dev_select.vendor_id = 0x8086; if (strstr(vendor, "AMD")) dev_select.vendor_id = 0x1002; return vulkan_device_create_internal(ctx, &dev_select, opts, flags); } #endif case AV_HWDEVICE_TYPE_DRM: { AVDRMDeviceContext *src_hwctx = src_ctx->hwctx; drmDevice *drm_dev_info; int err = drmGetDevice(src_hwctx->fd, &drm_dev_info); if (err) { av_log(ctx, AV_LOG_ERROR, "Unable to get device info from DRM fd!\n"); return AVERROR_EXTERNAL; } if (drm_dev_info->bustype == DRM_BUS_PCI) dev_select.pci_device = drm_dev_info->deviceinfo.pci->device_id; drmFreeDevice(&drm_dev_info); return vulkan_device_create_internal(ctx, &dev_select, opts, flags); } #endif #if CONFIG_CUDA case AV_HWDEVICE_TYPE_CUDA: { AVHWDeviceContext *cuda_cu = src_ctx; AVCUDADeviceContext *src_hwctx = src_ctx->hwctx; AVCUDADeviceContextInternal *cu_internal = src_hwctx->internal; CudaFunctions *cu = cu_internal->cuda_dl; int ret = CHECK_CU(cu->cuDeviceGetUuid((CUuuid *)&dev_select.uuid, cu_internal->cuda_device)); if (ret < 0) { av_log(ctx, AV_LOG_ERROR, "Unable to get UUID from CUDA!\n"); return AVERROR_EXTERNAL; } dev_select.has_uuid = 1; return vulkan_device_create_internal(ctx, &dev_select, opts, flags); } #endif default: return AVERROR(ENOSYS); } } static int vulkan_frames_get_constraints(AVHWDeviceContext *ctx, const void *hwconfig, AVHWFramesConstraints *constraints) { int count = 0; AVVulkanDeviceContext *hwctx = ctx->hwctx; VulkanDevicePriv *p = ctx->internal->priv; for (enum AVPixelFormat i = 0; i < AV_PIX_FMT_NB; i++) count += pixfmt_is_supported(hwctx, i, p->use_linear_images); #if CONFIG_CUDA if (p->dev_is_nvidia) count++; #endif constraints->valid_sw_formats = av_malloc_array(count + 1, sizeof(enum AVPixelFormat)); if (!constraints->valid_sw_formats) return AVERROR(ENOMEM); count = 0; for (enum AVPixelFormat i = 0; i < AV_PIX_FMT_NB; i++) if (pixfmt_is_supported(hwctx, i, p->use_linear_images)) constraints->valid_sw_formats[count++] = i; #if CONFIG_CUDA if (p->dev_is_nvidia) constraints->valid_sw_formats[count++] = AV_PIX_FMT_CUDA; #endif constraints->valid_sw_formats[count++] = AV_PIX_FMT_NONE; constraints->min_width = 0; constraints->min_height = 0; constraints->max_width = p->props.properties.limits.maxImageDimension2D; constraints->max_height = p->props.properties.limits.maxImageDimension2D; constraints->valid_hw_formats = av_malloc_array(2, sizeof(enum AVPixelFormat)); if (!constraints->valid_hw_formats) return AVERROR(ENOMEM); constraints->valid_hw_formats[0] = AV_PIX_FMT_VULKAN; constraints->valid_hw_formats[1] = AV_PIX_FMT_NONE; return 0; } static int alloc_mem(AVHWDeviceContext *ctx, VkMemoryRequirements *req, VkMemoryPropertyFlagBits req_flags, const void *alloc_extension, VkMemoryPropertyFlagBits *mem_flags, VkDeviceMemory *mem) { VkResult ret; int index = -1; VulkanDevicePriv *p = ctx->internal->priv; AVVulkanDeviceContext *dev_hwctx = ctx->hwctx; VkMemoryAllocateInfo alloc_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, .pNext = alloc_extension, .allocationSize = req->size, }; /* The vulkan spec requires memory types to be sorted in the "optimal" * order, so the first matching type we find will be the best/fastest one */ for (int i = 0; i < p->mprops.memoryTypeCount; i++) { /* The memory type must be supported by the requirements (bitfield) */ if (!(req->memoryTypeBits & (1 << i))) continue; /* The memory type flags must include our properties */ if ((p->mprops.memoryTypes[i].propertyFlags & req_flags) != req_flags) continue; /* Found a suitable memory type */ index = i; break; } if (index < 0) { av_log(ctx, AV_LOG_ERROR, "No memory type found for flags 0x%x\n", req_flags); return AVERROR(EINVAL); } alloc_info.memoryTypeIndex = index; ret = vkAllocateMemory(dev_hwctx->act_dev, &alloc_info, dev_hwctx->alloc, mem); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory: %s\n", vk_ret2str(ret)); return AVERROR(ENOMEM); } *mem_flags |= p->mprops.memoryTypes[index].propertyFlags; return 0; } static void vulkan_free_internal(AVVkFrameInternal *internal) { if (!internal) return; #if CONFIG_CUDA if (internal->cuda_fc_ref) { AVHWFramesContext *cuda_fc = (AVHWFramesContext *)internal->cuda_fc_ref->data; int planes = av_pix_fmt_count_planes(cuda_fc->sw_format); AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx; AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx; AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal; CudaFunctions *cu = cu_internal->cuda_dl; for (int i = 0; i < planes; i++) { if (internal->cu_sem[i]) CHECK_CU(cu->cuDestroyExternalSemaphore(internal->cu_sem[i])); if (internal->cu_mma[i]) CHECK_CU(cu->cuMipmappedArrayDestroy(internal->cu_mma[i])); if (internal->ext_mem[i]) CHECK_CU(cu->cuDestroyExternalMemory(internal->ext_mem[i])); } av_buffer_unref(&internal->cuda_fc_ref); } #endif av_free(internal); } static void vulkan_frame_free(void *opaque, uint8_t *data) { AVVkFrame *f = (AVVkFrame *)data; AVHWFramesContext *hwfc = opaque; AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx; int planes = av_pix_fmt_count_planes(hwfc->sw_format); vulkan_free_internal(f->internal); for (int i = 0; i < planes; i++) { vkDestroyImage(hwctx->act_dev, f->img[i], hwctx->alloc); vkFreeMemory(hwctx->act_dev, f->mem[i], hwctx->alloc); vkDestroySemaphore(hwctx->act_dev, f->sem[i], hwctx->alloc); } av_free(f); } static int alloc_bind_mem(AVHWFramesContext *hwfc, AVVkFrame *f, void *alloc_pnext, size_t alloc_pnext_stride) { int err; VkResult ret; AVHWDeviceContext *ctx = hwfc->device_ctx; VulkanDevicePriv *p = ctx->internal->priv; const int planes = av_pix_fmt_count_planes(hwfc->sw_format); VkBindImageMemoryInfo bind_info[AV_NUM_DATA_POINTERS] = { { 0 } }; AVVulkanDeviceContext *hwctx = ctx->hwctx; for (int i = 0; i < planes; i++) { int use_ded_mem; VkImageMemoryRequirementsInfo2 req_desc = { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2, .image = f->img[i], }; VkMemoryDedicatedAllocateInfo ded_alloc = { .sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO, .pNext = (void *)(((uint8_t *)alloc_pnext) + i*alloc_pnext_stride), }; VkMemoryDedicatedRequirements ded_req = { .sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS, }; VkMemoryRequirements2 req = { .sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2, .pNext = &ded_req, }; vkGetImageMemoryRequirements2(hwctx->act_dev, &req_desc, &req); if (f->tiling == VK_IMAGE_TILING_LINEAR) req.memoryRequirements.size = FFALIGN(req.memoryRequirements.size, p->props.properties.limits.minMemoryMapAlignment); /* In case the implementation prefers/requires dedicated allocation */ use_ded_mem = ded_req.prefersDedicatedAllocation | ded_req.requiresDedicatedAllocation; if (use_ded_mem) ded_alloc.image = f->img[i]; /* Allocate memory */ if ((err = alloc_mem(ctx, &req.memoryRequirements, f->tiling == VK_IMAGE_TILING_LINEAR ? VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT : VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, use_ded_mem ? &ded_alloc : (void *)ded_alloc.pNext, &f->flags, &f->mem[i]))) return err; f->size[i] = req.memoryRequirements.size; bind_info[i].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO; bind_info[i].image = f->img[i]; bind_info[i].memory = f->mem[i]; } /* Bind the allocated memory to the images */ ret = vkBindImageMemory2(hwctx->act_dev, planes, bind_info); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Failed to bind memory: %s\n", vk_ret2str(ret)); return AVERROR_EXTERNAL; } return 0; } enum PrepMode { PREP_MODE_WRITE, PREP_MODE_RO_SHADER, PREP_MODE_EXTERNAL_EXPORT, }; static int prepare_frame(AVHWFramesContext *hwfc, VulkanExecCtx *ectx, AVVkFrame *frame, enum PrepMode pmode) { int err; uint32_t dst_qf; VkImageLayout new_layout; VkAccessFlags new_access; const int planes = av_pix_fmt_count_planes(hwfc->sw_format); VkImageMemoryBarrier img_bar[AV_NUM_DATA_POINTERS] = { 0 }; VkSubmitInfo s_info = { .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO, .pSignalSemaphores = frame->sem, .signalSemaphoreCount = planes, }; VkPipelineStageFlagBits wait_st[AV_NUM_DATA_POINTERS]; for (int i = 0; i < planes; i++) wait_st[i] = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; switch (pmode) { case PREP_MODE_WRITE: new_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; new_access = VK_ACCESS_TRANSFER_WRITE_BIT; dst_qf = VK_QUEUE_FAMILY_IGNORED; break; case PREP_MODE_RO_SHADER: new_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL; new_access = VK_ACCESS_TRANSFER_READ_BIT; dst_qf = VK_QUEUE_FAMILY_IGNORED; break; case PREP_MODE_EXTERNAL_EXPORT: new_layout = VK_IMAGE_LAYOUT_GENERAL; new_access = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT; dst_qf = VK_QUEUE_FAMILY_EXTERNAL_KHR; s_info.pWaitSemaphores = frame->sem; s_info.pWaitDstStageMask = wait_st; s_info.waitSemaphoreCount = planes; break; } if ((err = wait_start_exec_ctx(hwfc, ectx))) return err; /* Change the image layout to something more optimal for writes. * This also signals the newly created semaphore, making it usable * for synchronization */ for (int i = 0; i < planes; i++) { img_bar[i].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; img_bar[i].srcAccessMask = 0x0; img_bar[i].dstAccessMask = new_access; img_bar[i].oldLayout = frame->layout[i]; img_bar[i].newLayout = new_layout; img_bar[i].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; img_bar[i].dstQueueFamilyIndex = dst_qf; img_bar[i].image = frame->img[i]; img_bar[i].subresourceRange.levelCount = 1; img_bar[i].subresourceRange.layerCount = 1; img_bar[i].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; frame->layout[i] = img_bar[i].newLayout; frame->access[i] = img_bar[i].dstAccessMask; } vkCmdPipelineBarrier(get_buf_exec_ctx(hwfc, ectx), VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, NULL, 0, NULL, planes, img_bar); return submit_exec_ctx(hwfc, ectx, &s_info, 0); } static int create_frame(AVHWFramesContext *hwfc, AVVkFrame **frame, VkImageTiling tiling, VkImageUsageFlagBits usage, void *create_pnext) { int err; VkResult ret; AVHWDeviceContext *ctx = hwfc->device_ctx; VulkanDevicePriv *p = ctx->internal->priv; AVVulkanDeviceContext *hwctx = ctx->hwctx; enum AVPixelFormat format = hwfc->sw_format; const VkFormat *img_fmts = av_vkfmt_from_pixfmt(format); const int planes = av_pix_fmt_count_planes(format); VkExportSemaphoreCreateInfo ext_sem_info = { .sType = VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO, .handleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT, }; VkSemaphoreCreateInfo sem_spawn = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, .pNext = p->extensions & EXT_EXTERNAL_FD_SEM ? &ext_sem_info : NULL, }; AVVkFrame *f = av_vk_frame_alloc(); if (!f) { av_log(ctx, AV_LOG_ERROR, "Unable to allocate memory for AVVkFrame!\n"); return AVERROR(ENOMEM); } /* Create the images */ for (int i = 0; i < planes; i++) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format); int w = hwfc->width; int h = hwfc->height; const int p_w = i > 0 ? AV_CEIL_RSHIFT(w, desc->log2_chroma_w) : w; const int p_h = i > 0 ? AV_CEIL_RSHIFT(h, desc->log2_chroma_h) : h; VkImageCreateInfo image_create_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .pNext = create_pnext, .imageType = VK_IMAGE_TYPE_2D, .format = img_fmts[i], .extent.width = p_w, .extent.height = p_h, .extent.depth = 1, .mipLevels = 1, .arrayLayers = 1, .flags = VK_IMAGE_CREATE_ALIAS_BIT, .tiling = tiling, .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, .usage = usage, .samples = VK_SAMPLE_COUNT_1_BIT, .pQueueFamilyIndices = p->qfs, .queueFamilyIndexCount = p->num_qfs, .sharingMode = p->num_qfs > 1 ? VK_SHARING_MODE_CONCURRENT : VK_SHARING_MODE_EXCLUSIVE, }; ret = vkCreateImage(hwctx->act_dev, &image_create_info, hwctx->alloc, &f->img[i]); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Image creation failure: %s\n", vk_ret2str(ret)); err = AVERROR(EINVAL); goto fail; } /* Create semaphore */ ret = vkCreateSemaphore(hwctx->act_dev, &sem_spawn, hwctx->alloc, &f->sem[i]); if (ret != VK_SUCCESS) { av_log(hwctx, AV_LOG_ERROR, "Failed to create semaphore: %s\n", vk_ret2str(ret)); return AVERROR_EXTERNAL; } f->layout[i] = image_create_info.initialLayout; f->access[i] = 0x0; } f->flags = 0x0; f->tiling = tiling; *frame = f; return 0; fail: vulkan_frame_free(hwfc, (uint8_t *)f); return err; } /* Checks if an export flag is enabled, and if it is ORs it with *iexp */ static void try_export_flags(AVHWFramesContext *hwfc, VkExternalMemoryHandleTypeFlags *comp_handle_types, VkExternalMemoryHandleTypeFlagBits *iexp, VkExternalMemoryHandleTypeFlagBits exp) { VkResult ret; AVVulkanFramesContext *hwctx = hwfc->hwctx; AVVulkanDeviceContext *dev_hwctx = hwfc->device_ctx->hwctx; VkExternalImageFormatProperties eprops = { .sType = VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES_KHR, }; VkImageFormatProperties2 props = { .sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2, .pNext = &eprops, }; VkPhysicalDeviceExternalImageFormatInfo enext = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO, .handleType = exp, }; VkPhysicalDeviceImageFormatInfo2 pinfo = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2, .pNext = !exp ? NULL : &enext, .format = av_vkfmt_from_pixfmt(hwfc->sw_format)[0], .type = VK_IMAGE_TYPE_2D, .tiling = hwctx->tiling, .usage = hwctx->usage, .flags = VK_IMAGE_CREATE_ALIAS_BIT, }; ret = vkGetPhysicalDeviceImageFormatProperties2(dev_hwctx->phys_dev, &pinfo, &props); if (ret == VK_SUCCESS) { *iexp |= exp; *comp_handle_types |= eprops.externalMemoryProperties.compatibleHandleTypes; } } static AVBufferRef *vulkan_pool_alloc(void *opaque, int size) { int err; AVVkFrame *f; AVBufferRef *avbuf = NULL; AVHWFramesContext *hwfc = opaque; AVVulkanFramesContext *hwctx = hwfc->hwctx; VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; VulkanFramesPriv *fp = hwfc->internal->priv; VkExportMemoryAllocateInfo eminfo[AV_NUM_DATA_POINTERS]; VkExternalMemoryHandleTypeFlags e = 0x0; VkExternalMemoryImageCreateInfo eiinfo = { .sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO, .pNext = hwctx->create_pnext, }; if (p->extensions & EXT_EXTERNAL_FD_MEMORY) try_export_flags(hwfc, &eiinfo.handleTypes, &e, VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT); if (p->extensions & EXT_EXTERNAL_DMABUF_MEMORY) try_export_flags(hwfc, &eiinfo.handleTypes, &e, VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT); for (int i = 0; i < av_pix_fmt_count_planes(hwfc->sw_format); i++) { eminfo[i].sType = VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO; eminfo[i].pNext = hwctx->alloc_pnext[i]; eminfo[i].handleTypes = e; } err = create_frame(hwfc, &f, hwctx->tiling, hwctx->usage, eiinfo.handleTypes ? &eiinfo : NULL); if (err) return NULL; err = alloc_bind_mem(hwfc, f, eminfo, sizeof(*eminfo)); if (err) goto fail; err = prepare_frame(hwfc, &fp->conv_ctx, f, PREP_MODE_WRITE); if (err) goto fail; avbuf = av_buffer_create((uint8_t *)f, sizeof(AVVkFrame), vulkan_frame_free, hwfc, 0); if (!avbuf) goto fail; return avbuf; fail: vulkan_frame_free(hwfc, (uint8_t *)f); return NULL; } static void vulkan_frames_uninit(AVHWFramesContext *hwfc) { VulkanFramesPriv *fp = hwfc->internal->priv; free_exec_ctx(hwfc, &fp->conv_ctx); free_exec_ctx(hwfc, &fp->upload_ctx); free_exec_ctx(hwfc, &fp->download_ctx); } static int vulkan_frames_init(AVHWFramesContext *hwfc) { int err; AVVkFrame *f; AVVulkanFramesContext *hwctx = hwfc->hwctx; VulkanFramesPriv *fp = hwfc->internal->priv; AVVulkanDeviceContext *dev_hwctx = hwfc->device_ctx->hwctx; VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; /* Default pool flags */ hwctx->tiling = hwctx->tiling ? hwctx->tiling : p->use_linear_images ? VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL; if (!hwctx->usage) hwctx->usage = DEFAULT_USAGE_FLAGS; err = create_exec_ctx(hwfc, &fp->conv_ctx, dev_hwctx->queue_family_comp_index, GET_QUEUE_COUNT(dev_hwctx, 0, 1, 0)); if (err) goto fail; err = create_exec_ctx(hwfc, &fp->upload_ctx, dev_hwctx->queue_family_tx_index, GET_QUEUE_COUNT(dev_hwctx, 0, 0, 1)); if (err) goto fail; err = create_exec_ctx(hwfc, &fp->download_ctx, dev_hwctx->queue_family_tx_index, 1); if (err) goto fail; /* Test to see if allocation will fail */ err = create_frame(hwfc, &f, hwctx->tiling, hwctx->usage, hwctx->create_pnext); if (err) goto fail; vulkan_frame_free(hwfc, (uint8_t *)f); /* If user did not specify a pool, hwfc->pool will be set to the internal one * in hwcontext.c just after this gets called */ if (!hwfc->pool) { hwfc->internal->pool_internal = av_buffer_pool_init2(sizeof(AVVkFrame), hwfc, vulkan_pool_alloc, NULL); if (!hwfc->internal->pool_internal) { err = AVERROR(ENOMEM); goto fail; } } return 0; fail: free_exec_ctx(hwfc, &fp->conv_ctx); free_exec_ctx(hwfc, &fp->upload_ctx); free_exec_ctx(hwfc, &fp->download_ctx); return err; } static int vulkan_get_buffer(AVHWFramesContext *hwfc, AVFrame *frame) { frame->buf[0] = av_buffer_pool_get(hwfc->pool); if (!frame->buf[0]) return AVERROR(ENOMEM); frame->data[0] = frame->buf[0]->data; frame->format = AV_PIX_FMT_VULKAN; frame->width = hwfc->width; frame->height = hwfc->height; return 0; } static int vulkan_transfer_get_formats(AVHWFramesContext *hwfc, enum AVHWFrameTransferDirection dir, enum AVPixelFormat **formats) { enum AVPixelFormat *fmts = av_malloc_array(2, sizeof(*fmts)); if (!fmts) return AVERROR(ENOMEM); fmts[0] = hwfc->sw_format; fmts[1] = AV_PIX_FMT_NONE; *formats = fmts; return 0; } typedef struct VulkanMapping { AVVkFrame *frame; int flags; } VulkanMapping; static void vulkan_unmap_frame(AVHWFramesContext *hwfc, HWMapDescriptor *hwmap) { VulkanMapping *map = hwmap->priv; AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx; const int planes = av_pix_fmt_count_planes(hwfc->sw_format); /* Check if buffer needs flushing */ if ((map->flags & AV_HWFRAME_MAP_WRITE) && !(map->frame->flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) { VkResult ret; VkMappedMemoryRange flush_ranges[AV_NUM_DATA_POINTERS] = { { 0 } }; for (int i = 0; i < planes; i++) { flush_ranges[i].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; flush_ranges[i].memory = map->frame->mem[i]; flush_ranges[i].size = VK_WHOLE_SIZE; } ret = vkFlushMappedMemoryRanges(hwctx->act_dev, planes, flush_ranges); if (ret != VK_SUCCESS) { av_log(hwfc, AV_LOG_ERROR, "Failed to flush memory: %s\n", vk_ret2str(ret)); } } for (int i = 0; i < planes; i++) vkUnmapMemory(hwctx->act_dev, map->frame->mem[i]); av_free(map); } static int vulkan_map_frame_to_mem(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src, int flags) { VkResult ret; int err, mapped_mem_count = 0; AVVkFrame *f = (AVVkFrame *)src->data[0]; AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx; const int planes = av_pix_fmt_count_planes(hwfc->sw_format); VulkanMapping *map = av_mallocz(sizeof(VulkanMapping)); if (!map) return AVERROR(EINVAL); if (src->format != AV_PIX_FMT_VULKAN) { av_log(hwfc, AV_LOG_ERROR, "Cannot map from pixel format %s!\n", av_get_pix_fmt_name(src->format)); err = AVERROR(EINVAL); goto fail; } if (!(f->flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) || !(f->tiling == VK_IMAGE_TILING_LINEAR)) { av_log(hwfc, AV_LOG_ERROR, "Unable to map frame, not host visible " "and linear!\n"); err = AVERROR(EINVAL); goto fail; } dst->width = src->width; dst->height = src->height; for (int i = 0; i < planes; i++) { ret = vkMapMemory(hwctx->act_dev, f->mem[i], 0, VK_WHOLE_SIZE, 0, (void **)&dst->data[i]); if (ret != VK_SUCCESS) { av_log(hwfc, AV_LOG_ERROR, "Failed to map image memory: %s\n", vk_ret2str(ret)); err = AVERROR_EXTERNAL; goto fail; } mapped_mem_count++; } /* Check if the memory contents matter */ if (((flags & AV_HWFRAME_MAP_READ) || !(flags & AV_HWFRAME_MAP_OVERWRITE)) && !(f->flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) { VkMappedMemoryRange map_mem_ranges[AV_NUM_DATA_POINTERS] = { { 0 } }; for (int i = 0; i < planes; i++) { map_mem_ranges[i].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; map_mem_ranges[i].size = VK_WHOLE_SIZE; map_mem_ranges[i].memory = f->mem[i]; } ret = vkInvalidateMappedMemoryRanges(hwctx->act_dev, planes, map_mem_ranges); if (ret != VK_SUCCESS) { av_log(hwfc, AV_LOG_ERROR, "Failed to invalidate memory: %s\n", vk_ret2str(ret)); err = AVERROR_EXTERNAL; goto fail; } } for (int i = 0; i < planes; i++) { VkImageSubresource sub = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, }; VkSubresourceLayout layout; vkGetImageSubresourceLayout(hwctx->act_dev, f->img[i], &sub, &layout); dst->linesize[i] = layout.rowPitch; } map->frame = f; map->flags = flags; err = ff_hwframe_map_create(src->hw_frames_ctx, dst, src, &vulkan_unmap_frame, map); if (err < 0) goto fail; return 0; fail: for (int i = 0; i < mapped_mem_count; i++) vkUnmapMemory(hwctx->act_dev, f->mem[i]); av_free(map); return err; } #if CONFIG_LIBDRM static void vulkan_unmap_from(AVHWFramesContext *hwfc, HWMapDescriptor *hwmap) { VulkanMapping *map = hwmap->priv; AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx; const int planes = av_pix_fmt_count_planes(hwfc->sw_format); for (int i = 0; i < planes; i++) { vkDestroyImage(hwctx->act_dev, map->frame->img[i], hwctx->alloc); vkFreeMemory(hwctx->act_dev, map->frame->mem[i], hwctx->alloc); vkDestroySemaphore(hwctx->act_dev, map->frame->sem[i], hwctx->alloc); } av_freep(&map->frame); } static const struct { uint32_t drm_fourcc; VkFormat vk_format; } vulkan_drm_format_map[] = { { DRM_FORMAT_R8, VK_FORMAT_R8_UNORM }, { DRM_FORMAT_R16, VK_FORMAT_R16_UNORM }, { DRM_FORMAT_GR88, VK_FORMAT_R8G8_UNORM }, { DRM_FORMAT_RG88, VK_FORMAT_R8G8_UNORM }, { DRM_FORMAT_GR1616, VK_FORMAT_R16G16_UNORM }, { DRM_FORMAT_RG1616, VK_FORMAT_R16G16_UNORM }, { DRM_FORMAT_ARGB8888, VK_FORMAT_B8G8R8A8_UNORM }, { DRM_FORMAT_XRGB8888, VK_FORMAT_B8G8R8A8_UNORM }, { DRM_FORMAT_ABGR8888, VK_FORMAT_R8G8B8A8_UNORM }, { DRM_FORMAT_XBGR8888, VK_FORMAT_R8G8B8A8_UNORM }, }; static inline VkFormat drm_to_vulkan_fmt(uint32_t drm_fourcc) { for (int i = 0; i < FF_ARRAY_ELEMS(vulkan_drm_format_map); i++) if (vulkan_drm_format_map[i].drm_fourcc == drm_fourcc) return vulkan_drm_format_map[i].vk_format; return VK_FORMAT_UNDEFINED; } static int vulkan_map_from_drm_frame_desc(AVHWFramesContext *hwfc, AVVkFrame **frame, AVDRMFrameDescriptor *desc) { int err = 0; VkResult ret; AVVkFrame *f; int bind_counts = 0; AVHWDeviceContext *ctx = hwfc->device_ctx; AVVulkanDeviceContext *hwctx = ctx->hwctx; VulkanDevicePriv *p = ctx->internal->priv; VulkanFramesPriv *fp = hwfc->internal->priv; AVVulkanFramesContext *frames_hwctx = hwfc->hwctx; const AVPixFmtDescriptor *fmt_desc = av_pix_fmt_desc_get(hwfc->sw_format); const int has_modifiers = p->extensions & EXT_DRM_MODIFIER_FLAGS; VkSubresourceLayout plane_data[AV_NUM_DATA_POINTERS] = { 0 }; VkBindImageMemoryInfo bind_info[AV_NUM_DATA_POINTERS] = { 0 }; VkBindImagePlaneMemoryInfo plane_info[AV_NUM_DATA_POINTERS] = { 0 }; VkExternalMemoryHandleTypeFlagBits htype = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT; VK_LOAD_PFN(hwctx->inst, vkGetMemoryFdPropertiesKHR); for (int i = 0; i < desc->nb_layers; i++) { if (drm_to_vulkan_fmt(desc->layers[i].format) == VK_FORMAT_UNDEFINED) { av_log(ctx, AV_LOG_ERROR, "Unsupported DMABUF layer format %#08x!\n", desc->layers[i].format); return AVERROR(EINVAL); } } if (!(f = av_vk_frame_alloc())) { av_log(ctx, AV_LOG_ERROR, "Unable to allocate memory for AVVkFrame!\n"); err = AVERROR(ENOMEM); goto fail; } f->tiling = has_modifiers ? VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT : desc->objects[0].format_modifier == DRM_FORMAT_MOD_LINEAR ? VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL; for (int i = 0; i < desc->nb_layers; i++) { const int planes = desc->layers[i].nb_planes; VkImageDrmFormatModifierExplicitCreateInfoEXT drm_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT, .drmFormatModifier = desc->objects[0].format_modifier, .drmFormatModifierPlaneCount = planes, .pPlaneLayouts = (const VkSubresourceLayout *)&plane_data, }; VkExternalMemoryImageCreateInfo einfo = { .sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO, .pNext = has_modifiers ? &drm_info : NULL, .handleTypes = htype, }; VkSemaphoreCreateInfo sem_spawn = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, }; const int p_w = i > 0 ? AV_CEIL_RSHIFT(hwfc->width, fmt_desc->log2_chroma_w) : hwfc->width; const int p_h = i > 0 ? AV_CEIL_RSHIFT(hwfc->height, fmt_desc->log2_chroma_h) : hwfc->height; VkImageCreateInfo image_create_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .pNext = &einfo, .imageType = VK_IMAGE_TYPE_2D, .format = drm_to_vulkan_fmt(desc->layers[i].format), .extent.width = p_w, .extent.height = p_h, .extent.depth = 1, .mipLevels = 1, .arrayLayers = 1, .flags = VK_IMAGE_CREATE_ALIAS_BIT, .tiling = f->tiling, .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, /* specs say so */ .usage = frames_hwctx->usage, .samples = VK_SAMPLE_COUNT_1_BIT, .pQueueFamilyIndices = p->qfs, .queueFamilyIndexCount = p->num_qfs, .sharingMode = p->num_qfs > 1 ? VK_SHARING_MODE_CONCURRENT : VK_SHARING_MODE_EXCLUSIVE, }; for (int j = 0; j < planes; j++) { plane_data[j].offset = desc->layers[i].planes[j].offset; plane_data[j].rowPitch = desc->layers[i].planes[j].pitch; plane_data[j].size = 0; /* The specs say so for all 3 */ plane_data[j].arrayPitch = 0; plane_data[j].depthPitch = 0; } /* Create image */ ret = vkCreateImage(hwctx->act_dev, &image_create_info, hwctx->alloc, &f->img[i]); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Image creation failure: %s\n", vk_ret2str(ret)); err = AVERROR(EINVAL); goto fail; } ret = vkCreateSemaphore(hwctx->act_dev, &sem_spawn, hwctx->alloc, &f->sem[i]); if (ret != VK_SUCCESS) { av_log(hwctx, AV_LOG_ERROR, "Failed to create semaphore: %s\n", vk_ret2str(ret)); return AVERROR_EXTERNAL; } /* We'd import a semaphore onto the one we created using * vkImportSemaphoreFdKHR but unfortunately neither DRM nor VAAPI * offer us anything we could import and sync with, so instead * just signal the semaphore we created. */ f->layout[i] = image_create_info.initialLayout; f->access[i] = 0x0; } for (int i = 0; i < desc->nb_objects; i++) { int use_ded_mem = 0; VkMemoryFdPropertiesKHR fdmp = { .sType = VK_STRUCTURE_TYPE_MEMORY_FD_PROPERTIES_KHR, }; VkMemoryRequirements req = { .size = desc->objects[i].size, }; VkImportMemoryFdInfoKHR idesc = { .sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR, .handleType = htype, .fd = dup(desc->objects[i].fd), }; VkMemoryDedicatedAllocateInfo ded_alloc = { .sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO, .pNext = &idesc, }; ret = pfn_vkGetMemoryFdPropertiesKHR(hwctx->act_dev, htype, idesc.fd, &fdmp); if (ret != VK_SUCCESS) { av_log(hwfc, AV_LOG_ERROR, "Failed to get FD properties: %s\n", vk_ret2str(ret)); err = AVERROR_EXTERNAL; close(idesc.fd); goto fail; } req.memoryTypeBits = fdmp.memoryTypeBits; /* Dedicated allocation only makes sense if there's a one to one mapping * between images and the memory backing them, so only check in this * case. */ if (desc->nb_layers == desc->nb_objects) { VkImageMemoryRequirementsInfo2 req_desc = { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2, .image = f->img[i], }; VkMemoryDedicatedRequirements ded_req = { .sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS, }; VkMemoryRequirements2 req2 = { .sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2, .pNext = &ded_req, }; vkGetImageMemoryRequirements2(hwctx->act_dev, &req_desc, &req2); use_ded_mem = ded_req.prefersDedicatedAllocation | ded_req.requiresDedicatedAllocation; if (use_ded_mem) ded_alloc.image = f->img[i]; } err = alloc_mem(ctx, &req, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, use_ded_mem ? &ded_alloc : ded_alloc.pNext, &f->flags, &f->mem[i]); if (err) { close(idesc.fd); return err; } f->size[i] = desc->objects[i].size; } for (int i = 0; i < desc->nb_layers; i++) { const int planes = desc->layers[i].nb_planes; const int signal_p = has_modifiers && (planes > 1); for (int j = 0; j < planes; j++) { VkImageAspectFlagBits aspect = j == 0 ? VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT : j == 1 ? VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT : VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT; plane_info[bind_counts].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO; plane_info[bind_counts].planeAspect = aspect; bind_info[bind_counts].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO; bind_info[bind_counts].pNext = signal_p ? &plane_info[bind_counts] : NULL; bind_info[bind_counts].image = f->img[i]; bind_info[bind_counts].memory = f->mem[desc->layers[i].planes[j].object_index]; bind_info[bind_counts].memoryOffset = desc->layers[i].planes[j].offset; bind_counts++; } } /* Bind the allocated memory to the images */ ret = vkBindImageMemory2(hwctx->act_dev, bind_counts, bind_info); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Failed to bind memory: %s\n", vk_ret2str(ret)); return AVERROR_EXTERNAL; } /* NOTE: This is completely uneccesary and unneeded once we can import * semaphores from DRM. Otherwise we have to activate the semaphores. * We're reusing the exec context that's also used for uploads/downloads. */ err = prepare_frame(hwfc, &fp->conv_ctx, f, PREP_MODE_RO_SHADER); if (err) goto fail; *frame = f; return 0; fail: for (int i = 0; i < desc->nb_layers; i++) { vkDestroyImage(hwctx->act_dev, f->img[i], hwctx->alloc); vkDestroySemaphore(hwctx->act_dev, f->sem[i], hwctx->alloc); } for (int i = 0; i < desc->nb_objects; i++) vkFreeMemory(hwctx->act_dev, f->mem[i], hwctx->alloc); av_free(f); return err; } static int vulkan_map_from_drm(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src, int flags) { int err = 0; AVVkFrame *f; VulkanMapping *map = NULL; err = vulkan_map_from_drm_frame_desc(hwfc, &f, (AVDRMFrameDescriptor *)src->data[0]); if (err) return err; /* The unmapping function will free this */ dst->data[0] = (uint8_t *)f; dst->width = src->width; dst->height = src->height; map = av_mallocz(sizeof(VulkanMapping)); if (!map) goto fail; map->frame = f; map->flags = flags; err = ff_hwframe_map_create(dst->hw_frames_ctx, dst, src, &vulkan_unmap_from, map); if (err < 0) goto fail; av_log(hwfc, AV_LOG_DEBUG, "Mapped DRM object to Vulkan!\n"); return 0; fail: vulkan_frame_free(hwfc->device_ctx->hwctx, (uint8_t *)f); av_free(map); return err; } #if CONFIG_VAAPI static int vulkan_map_from_vaapi(AVHWFramesContext *dst_fc, AVFrame *dst, const AVFrame *src, int flags) { int err; AVFrame *tmp = av_frame_alloc(); AVHWFramesContext *vaapi_fc = (AVHWFramesContext*)src->hw_frames_ctx->data; AVVAAPIDeviceContext *vaapi_ctx = vaapi_fc->device_ctx->hwctx; VASurfaceID surface_id = (VASurfaceID)(uintptr_t)src->data[3]; if (!tmp) return AVERROR(ENOMEM); /* We have to sync since like the previous comment said, no semaphores */ vaSyncSurface(vaapi_ctx->display, surface_id); tmp->format = AV_PIX_FMT_DRM_PRIME; err = av_hwframe_map(tmp, src, flags); if (err < 0) goto fail; err = vulkan_map_from_drm(dst_fc, dst, tmp, flags); if (err < 0) goto fail; err = ff_hwframe_map_replace(dst, src); fail: av_frame_free(&tmp); return err; } #endif #endif #if CONFIG_CUDA static int vulkan_export_to_cuda(AVHWFramesContext *hwfc, AVBufferRef *cuda_hwfc, const AVFrame *frame) { int err; VkResult ret; AVVkFrame *dst_f; AVVkFrameInternal *dst_int; AVHWDeviceContext *ctx = hwfc->device_ctx; AVVulkanDeviceContext *hwctx = ctx->hwctx; const int planes = av_pix_fmt_count_planes(hwfc->sw_format); const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(hwfc->sw_format); VK_LOAD_PFN(hwctx->inst, vkGetMemoryFdKHR); VK_LOAD_PFN(hwctx->inst, vkGetSemaphoreFdKHR); AVHWFramesContext *cuda_fc = (AVHWFramesContext*)cuda_hwfc->data; AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx; AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx; AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal; CudaFunctions *cu = cu_internal->cuda_dl; CUarray_format cufmt = desc->comp[0].depth > 8 ? CU_AD_FORMAT_UNSIGNED_INT16 : CU_AD_FORMAT_UNSIGNED_INT8; dst_f = (AVVkFrame *)frame->data[0]; dst_int = dst_f->internal; if (!dst_int || !dst_int->cuda_fc_ref) { if (!dst_f->internal) dst_f->internal = dst_int = av_mallocz(sizeof(*dst_f->internal)); if (!dst_int) { err = AVERROR(ENOMEM); goto fail; } dst_int->cuda_fc_ref = av_buffer_ref(cuda_hwfc); if (!dst_int->cuda_fc_ref) { err = AVERROR(ENOMEM); goto fail; } for (int i = 0; i < planes; i++) { CUDA_EXTERNAL_MEMORY_MIPMAPPED_ARRAY_DESC tex_desc = { .offset = 0, .arrayDesc = { .Width = i > 0 ? AV_CEIL_RSHIFT(hwfc->width, desc->log2_chroma_w) : hwfc->width, .Height = i > 0 ? AV_CEIL_RSHIFT(hwfc->height, desc->log2_chroma_h) : hwfc->height, .Depth = 0, .Format = cufmt, .NumChannels = 1 + ((planes == 2) && i), .Flags = 0, }, .numLevels = 1, }; CUDA_EXTERNAL_MEMORY_HANDLE_DESC ext_desc = { .type = CU_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD, .size = dst_f->size[i], }; VkMemoryGetFdInfoKHR export_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR, .memory = dst_f->mem[i], .handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR, }; VkSemaphoreGetFdInfoKHR sem_export = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR, .semaphore = dst_f->sem[i], .handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT, }; CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC ext_sem_desc = { .type = CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD, }; ret = pfn_vkGetMemoryFdKHR(hwctx->act_dev, &export_info, &ext_desc.handle.fd); if (ret != VK_SUCCESS) { av_log(hwfc, AV_LOG_ERROR, "Unable to export the image as a FD!\n"); err = AVERROR_EXTERNAL; goto fail; } ret = CHECK_CU(cu->cuImportExternalMemory(&dst_int->ext_mem[i], &ext_desc)); if (ret < 0) { err = AVERROR_EXTERNAL; goto fail; } ret = CHECK_CU(cu->cuExternalMemoryGetMappedMipmappedArray(&dst_int->cu_mma[i], dst_int->ext_mem[i], &tex_desc)); if (ret < 0) { err = AVERROR_EXTERNAL; goto fail; } ret = CHECK_CU(cu->cuMipmappedArrayGetLevel(&dst_int->cu_array[i], dst_int->cu_mma[i], 0)); if (ret < 0) { err = AVERROR_EXTERNAL; goto fail; } ret = pfn_vkGetSemaphoreFdKHR(hwctx->act_dev, &sem_export, &ext_sem_desc.handle.fd); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Failed to export semaphore: %s\n", vk_ret2str(ret)); err = AVERROR_EXTERNAL; goto fail; } ret = CHECK_CU(cu->cuImportExternalSemaphore(&dst_int->cu_sem[i], &ext_sem_desc)); if (ret < 0) { err = AVERROR_EXTERNAL; goto fail; } } } return 0; fail: return err; } static int vulkan_transfer_data_from_cuda(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src) { int err; VkResult ret; CUcontext dummy; AVVkFrame *dst_f; AVVkFrameInternal *dst_int; const int planes = av_pix_fmt_count_planes(hwfc->sw_format); const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(hwfc->sw_format); AVHWFramesContext *cuda_fc = (AVHWFramesContext*)src->hw_frames_ctx->data; AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx; AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx; AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal; CudaFunctions *cu = cu_internal->cuda_dl; CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS s_w_par[AV_NUM_DATA_POINTERS] = { 0 }; CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS s_s_par[AV_NUM_DATA_POINTERS] = { 0 }; ret = CHECK_CU(cu->cuCtxPushCurrent(cuda_dev->cuda_ctx)); if (ret < 0) { err = AVERROR_EXTERNAL; goto fail; } dst_f = (AVVkFrame *)dst->data[0]; ret = vulkan_export_to_cuda(hwfc, src->hw_frames_ctx, dst); if (ret < 0) { goto fail; } dst_int = dst_f->internal; ret = CHECK_CU(cu->cuWaitExternalSemaphoresAsync(dst_int->cu_sem, s_w_par, planes, cuda_dev->stream)); if (ret < 0) { err = AVERROR_EXTERNAL; goto fail; } for (int i = 0; i < planes; i++) { CUDA_MEMCPY2D cpy = { .srcMemoryType = CU_MEMORYTYPE_DEVICE, .srcDevice = (CUdeviceptr)src->data[i], .srcPitch = src->linesize[i], .srcY = 0, .dstMemoryType = CU_MEMORYTYPE_ARRAY, .dstArray = dst_int->cu_array[i], .WidthInBytes = (i > 0 ? AV_CEIL_RSHIFT(hwfc->width, desc->log2_chroma_w) : hwfc->width) * desc->comp[i].step, .Height = i > 0 ? AV_CEIL_RSHIFT(hwfc->height, desc->log2_chroma_h) : hwfc->height, }; ret = CHECK_CU(cu->cuMemcpy2DAsync(&cpy, cuda_dev->stream)); if (ret < 0) { err = AVERROR_EXTERNAL; goto fail; } } ret = CHECK_CU(cu->cuSignalExternalSemaphoresAsync(dst_int->cu_sem, s_s_par, planes, cuda_dev->stream)); if (ret < 0) { err = AVERROR_EXTERNAL; goto fail; } CHECK_CU(cu->cuCtxPopCurrent(&dummy)); av_log(hwfc, AV_LOG_VERBOSE, "Transfered CUDA image to Vulkan!\n"); return 0; fail: CHECK_CU(cu->cuCtxPopCurrent(&dummy)); vulkan_free_internal(dst_int); dst_f->internal = NULL; av_buffer_unref(&dst->buf[0]); return err; } #endif static int vulkan_map_to(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src, int flags) { av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; switch (src->format) { #if CONFIG_LIBDRM #if CONFIG_VAAPI case AV_PIX_FMT_VAAPI: if (p->extensions & EXT_EXTERNAL_DMABUF_MEMORY) return vulkan_map_from_vaapi(hwfc, dst, src, flags); #endif case AV_PIX_FMT_DRM_PRIME: if (p->extensions & EXT_EXTERNAL_DMABUF_MEMORY) return vulkan_map_from_drm(hwfc, dst, src, flags); #endif default: return AVERROR(ENOSYS); } } #if CONFIG_LIBDRM typedef struct VulkanDRMMapping { AVDRMFrameDescriptor drm_desc; AVVkFrame *source; } VulkanDRMMapping; static void vulkan_unmap_to_drm(AVHWFramesContext *hwfc, HWMapDescriptor *hwmap) { AVDRMFrameDescriptor *drm_desc = hwmap->priv; for (int i = 0; i < drm_desc->nb_objects; i++) close(drm_desc->objects[i].fd); av_free(drm_desc); } static inline uint32_t vulkan_fmt_to_drm(VkFormat vkfmt) { for (int i = 0; i < FF_ARRAY_ELEMS(vulkan_drm_format_map); i++) if (vulkan_drm_format_map[i].vk_format == vkfmt) return vulkan_drm_format_map[i].drm_fourcc; return DRM_FORMAT_INVALID; } static int vulkan_map_to_drm(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src, int flags) { int err = 0; VkResult ret; AVVkFrame *f = (AVVkFrame *)src->data[0]; VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; VulkanFramesPriv *fp = hwfc->internal->priv; AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx; const int planes = av_pix_fmt_count_planes(hwfc->sw_format); VK_LOAD_PFN(hwctx->inst, vkGetMemoryFdKHR); VkImageDrmFormatModifierPropertiesEXT drm_mod = { .sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_PROPERTIES_EXT, }; AVDRMFrameDescriptor *drm_desc = av_mallocz(sizeof(*drm_desc)); if (!drm_desc) return AVERROR(ENOMEM); err = prepare_frame(hwfc, &fp->conv_ctx, f, PREP_MODE_EXTERNAL_EXPORT); if (err < 0) goto end; err = ff_hwframe_map_create(src->hw_frames_ctx, dst, src, &vulkan_unmap_to_drm, drm_desc); if (err < 0) goto end; if (p->extensions & EXT_DRM_MODIFIER_FLAGS) { VK_LOAD_PFN(hwctx->inst, vkGetImageDrmFormatModifierPropertiesEXT); ret = pfn_vkGetImageDrmFormatModifierPropertiesEXT(hwctx->act_dev, f->img[0], &drm_mod); if (ret != VK_SUCCESS) { av_log(hwfc, AV_LOG_ERROR, "Failed to retrieve DRM format modifier!\n"); err = AVERROR_EXTERNAL; goto end; } } for (int i = 0; (i < planes) && (f->mem[i]); i++) { VkMemoryGetFdInfoKHR export_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR, .memory = f->mem[i], .handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT, }; ret = pfn_vkGetMemoryFdKHR(hwctx->act_dev, &export_info, &drm_desc->objects[i].fd); if (ret != VK_SUCCESS) { av_log(hwfc, AV_LOG_ERROR, "Unable to export the image as a FD!\n"); err = AVERROR_EXTERNAL; goto end; } drm_desc->nb_objects++; drm_desc->objects[i].size = f->size[i]; drm_desc->objects[i].format_modifier = drm_mod.drmFormatModifier; } drm_desc->nb_layers = planes; for (int i = 0; i < drm_desc->nb_layers; i++) { VkSubresourceLayout layout; VkImageSubresource sub = { .aspectMask = p->extensions & EXT_DRM_MODIFIER_FLAGS ? VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT : VK_IMAGE_ASPECT_COLOR_BIT, }; VkFormat plane_vkfmt = av_vkfmt_from_pixfmt(hwfc->sw_format)[i]; drm_desc->layers[i].format = vulkan_fmt_to_drm(plane_vkfmt); drm_desc->layers[i].nb_planes = 1; if (drm_desc->layers[i].format == DRM_FORMAT_INVALID) { av_log(hwfc, AV_LOG_ERROR, "Cannot map to DRM layer, unsupported!\n"); err = AVERROR_PATCHWELCOME; goto end; } drm_desc->layers[i].planes[0].object_index = FFMIN(i, drm_desc->nb_objects - 1); if (f->tiling == VK_IMAGE_TILING_OPTIMAL) continue; vkGetImageSubresourceLayout(hwctx->act_dev, f->img[i], &sub, &layout); drm_desc->layers[i].planes[0].offset = layout.offset; drm_desc->layers[i].planes[0].pitch = layout.rowPitch; } dst->width = src->width; dst->height = src->height; dst->data[0] = (uint8_t *)drm_desc; av_log(hwfc, AV_LOG_VERBOSE, "Mapped AVVkFrame to a DRM object!\n"); return 0; end: av_free(drm_desc); return err; } #if CONFIG_VAAPI static int vulkan_map_to_vaapi(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src, int flags) { int err; AVFrame *tmp = av_frame_alloc(); if (!tmp) return AVERROR(ENOMEM); tmp->format = AV_PIX_FMT_DRM_PRIME; err = vulkan_map_to_drm(hwfc, tmp, src, flags); if (err < 0) goto fail; err = av_hwframe_map(dst, tmp, flags); if (err < 0) goto fail; err = ff_hwframe_map_replace(dst, src); fail: av_frame_free(&tmp); return err; } #endif #endif static int vulkan_map_from(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src, int flags) { av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; switch (dst->format) { #if CONFIG_LIBDRM case AV_PIX_FMT_DRM_PRIME: if (p->extensions & EXT_EXTERNAL_DMABUF_MEMORY) return vulkan_map_to_drm(hwfc, dst, src, flags); #if CONFIG_VAAPI case AV_PIX_FMT_VAAPI: if (p->extensions & EXT_EXTERNAL_DMABUF_MEMORY) return vulkan_map_to_vaapi(hwfc, dst, src, flags); #endif #endif default: return vulkan_map_frame_to_mem(hwfc, dst, src, flags); } } typedef struct ImageBuffer { VkBuffer buf; VkDeviceMemory mem; VkMemoryPropertyFlagBits flags; int mapped_mem; } ImageBuffer; static void free_buf(void *opaque, uint8_t *data) { AVHWDeviceContext *ctx = opaque; AVVulkanDeviceContext *hwctx = ctx->hwctx; ImageBuffer *vkbuf = (ImageBuffer *)data; if (vkbuf->buf) vkDestroyBuffer(hwctx->act_dev, vkbuf->buf, hwctx->alloc); if (vkbuf->mem) vkFreeMemory(hwctx->act_dev, vkbuf->mem, hwctx->alloc); av_free(data); } static int create_buf(AVHWDeviceContext *ctx, AVBufferRef **buf, size_t imp_size, int height, int *stride, VkBufferUsageFlags usage, VkMemoryPropertyFlagBits flags, void *create_pnext, void *alloc_pnext) { int err; VkResult ret; int use_ded_mem; AVVulkanDeviceContext *hwctx = ctx->hwctx; VulkanDevicePriv *p = ctx->internal->priv; VkBufferCreateInfo buf_spawn = { .sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, .pNext = create_pnext, .usage = usage, .sharingMode = VK_SHARING_MODE_EXCLUSIVE, }; VkBufferMemoryRequirementsInfo2 req_desc = { .sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2, }; VkMemoryDedicatedAllocateInfo ded_alloc = { .sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO, .pNext = alloc_pnext, }; VkMemoryDedicatedRequirements ded_req = { .sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS, }; VkMemoryRequirements2 req = { .sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2, .pNext = &ded_req, }; ImageBuffer *vkbuf = av_mallocz(sizeof(*vkbuf)); if (!vkbuf) return AVERROR(ENOMEM); vkbuf->mapped_mem = !!imp_size; if (!vkbuf->mapped_mem) { *stride = FFALIGN(*stride, p->props.properties.limits.optimalBufferCopyRowPitchAlignment); buf_spawn.size = height*(*stride); buf_spawn.size = FFALIGN(buf_spawn.size, p->props.properties.limits.minMemoryMapAlignment); } else { buf_spawn.size = imp_size; } ret = vkCreateBuffer(hwctx->act_dev, &buf_spawn, NULL, &vkbuf->buf); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Failed to create buffer: %s\n", vk_ret2str(ret)); return AVERROR_EXTERNAL; } req_desc.buffer = vkbuf->buf; vkGetBufferMemoryRequirements2(hwctx->act_dev, &req_desc, &req); /* In case the implementation prefers/requires dedicated allocation */ use_ded_mem = ded_req.prefersDedicatedAllocation | ded_req.requiresDedicatedAllocation; if (use_ded_mem) ded_alloc.buffer = vkbuf->buf; err = alloc_mem(ctx, &req.memoryRequirements, flags, use_ded_mem ? &ded_alloc : (void *)ded_alloc.pNext, &vkbuf->flags, &vkbuf->mem); if (err) return err; ret = vkBindBufferMemory(hwctx->act_dev, vkbuf->buf, vkbuf->mem, 0); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Failed to bind memory to buffer: %s\n", vk_ret2str(ret)); free_buf(ctx, (uint8_t *)vkbuf); return AVERROR_EXTERNAL; } *buf = av_buffer_create((uint8_t *)vkbuf, sizeof(*vkbuf), free_buf, ctx, 0); if (!(*buf)) { free_buf(ctx, (uint8_t *)vkbuf); return AVERROR(ENOMEM); } return 0; } /* Skips mapping of host mapped buffers but still invalidates them */ static int map_buffers(AVHWDeviceContext *ctx, AVBufferRef **bufs, uint8_t *mem[], int nb_buffers, int invalidate) { VkResult ret; AVVulkanDeviceContext *hwctx = ctx->hwctx; VkMappedMemoryRange invalidate_ctx[AV_NUM_DATA_POINTERS]; int invalidate_count = 0; for (int i = 0; i < nb_buffers; i++) { ImageBuffer *vkbuf = (ImageBuffer *)bufs[i]->data; if (vkbuf->mapped_mem) continue; ret = vkMapMemory(hwctx->act_dev, vkbuf->mem, 0, VK_WHOLE_SIZE, 0, (void **)&mem[i]); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Failed to map buffer memory: %s\n", vk_ret2str(ret)); return AVERROR_EXTERNAL; } } if (!invalidate) return 0; for (int i = 0; i < nb_buffers; i++) { ImageBuffer *vkbuf = (ImageBuffer *)bufs[i]->data; const VkMappedMemoryRange ival_buf = { .sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE, .memory = vkbuf->mem, .size = VK_WHOLE_SIZE, }; if (vkbuf->flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) continue; invalidate_ctx[invalidate_count++] = ival_buf; } if (invalidate_count) { ret = vkInvalidateMappedMemoryRanges(hwctx->act_dev, invalidate_count, invalidate_ctx); if (ret != VK_SUCCESS) av_log(ctx, AV_LOG_WARNING, "Failed to invalidate memory: %s\n", vk_ret2str(ret)); } return 0; } static int unmap_buffers(AVHWDeviceContext *ctx, AVBufferRef **bufs, int nb_buffers, int flush) { int err = 0; VkResult ret; AVVulkanDeviceContext *hwctx = ctx->hwctx; VkMappedMemoryRange flush_ctx[AV_NUM_DATA_POINTERS]; int flush_count = 0; if (flush) { for (int i = 0; i < nb_buffers; i++) { ImageBuffer *vkbuf = (ImageBuffer *)bufs[i]->data; const VkMappedMemoryRange flush_buf = { .sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE, .memory = vkbuf->mem, .size = VK_WHOLE_SIZE, }; if (vkbuf->flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) continue; flush_ctx[flush_count++] = flush_buf; } } if (flush_count) { ret = vkFlushMappedMemoryRanges(hwctx->act_dev, flush_count, flush_ctx); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Failed to flush memory: %s\n", vk_ret2str(ret)); err = AVERROR_EXTERNAL; /* We still want to try to unmap them */ } } for (int i = 0; i < nb_buffers; i++) { ImageBuffer *vkbuf = (ImageBuffer *)bufs[i]->data; if (vkbuf->mapped_mem) continue; vkUnmapMemory(hwctx->act_dev, vkbuf->mem); } return err; } static int transfer_image_buf(AVHWFramesContext *hwfc, const AVFrame *f, AVBufferRef **bufs, const int *buf_stride, int w, int h, enum AVPixelFormat pix_fmt, int to_buf) { int err; AVVkFrame *frame = (AVVkFrame *)f->data[0]; VulkanFramesPriv *fp = hwfc->internal->priv; int bar_num = 0; VkPipelineStageFlagBits sem_wait_dst[AV_NUM_DATA_POINTERS]; const int planes = av_pix_fmt_count_planes(pix_fmt); const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); VkImageMemoryBarrier img_bar[AV_NUM_DATA_POINTERS] = { 0 }; VulkanExecCtx *ectx = to_buf ? &fp->download_ctx : &fp->upload_ctx; VkCommandBuffer cmd_buf = get_buf_exec_ctx(hwfc, ectx); VkSubmitInfo s_info = { .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO, .pSignalSemaphores = frame->sem, .pWaitSemaphores = frame->sem, .pWaitDstStageMask = sem_wait_dst, .signalSemaphoreCount = planes, .waitSemaphoreCount = planes, }; if ((err = wait_start_exec_ctx(hwfc, ectx))) return err; /* Change the image layout to something more optimal for transfers */ for (int i = 0; i < planes; i++) { VkImageLayout new_layout = to_buf ? VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL : VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; VkAccessFlags new_access = to_buf ? VK_ACCESS_TRANSFER_READ_BIT : VK_ACCESS_TRANSFER_WRITE_BIT; sem_wait_dst[i] = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; /* If the layout matches and we have read access skip the barrier */ if ((frame->layout[i] == new_layout) && (frame->access[i] & new_access)) continue; img_bar[bar_num].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; img_bar[bar_num].srcAccessMask = 0x0; img_bar[bar_num].dstAccessMask = new_access; img_bar[bar_num].oldLayout = frame->layout[i]; img_bar[bar_num].newLayout = new_layout; img_bar[bar_num].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; img_bar[bar_num].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; img_bar[bar_num].image = frame->img[i]; img_bar[bar_num].subresourceRange.levelCount = 1; img_bar[bar_num].subresourceRange.layerCount = 1; img_bar[bar_num].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; frame->layout[i] = img_bar[bar_num].newLayout; frame->access[i] = img_bar[bar_num].dstAccessMask; bar_num++; } if (bar_num) vkCmdPipelineBarrier(cmd_buf, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, NULL, 0, NULL, bar_num, img_bar); /* Schedule a copy for each plane */ for (int i = 0; i < planes; i++) { ImageBuffer *vkbuf = (ImageBuffer *)bufs[i]->data; const int p_w = i > 0 ? AV_CEIL_RSHIFT(w, desc->log2_chroma_w) : w; const int p_h = i > 0 ? AV_CEIL_RSHIFT(h, desc->log2_chroma_h) : h; VkBufferImageCopy buf_reg = { .bufferOffset = 0, /* Buffer stride isn't in bytes, it's in samples, the implementation * uses the image's VkFormat to know how many bytes per sample * the buffer has. So we have to convert by dividing. Stupid. * Won't work with YUVA or other planar formats with alpha. */ .bufferRowLength = buf_stride[i] / desc->comp[i].step, .bufferImageHeight = p_h, .imageSubresource.layerCount = 1, .imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .imageOffset = { 0, 0, 0, }, .imageExtent = { p_w, p_h, 1, }, }; if (to_buf) vkCmdCopyImageToBuffer(cmd_buf, frame->img[i], frame->layout[i], vkbuf->buf, 1, &buf_reg); else vkCmdCopyBufferToImage(cmd_buf, vkbuf->buf, frame->img[i], frame->layout[i], 1, &buf_reg); } /* When uploading, do this asynchronously if the source is refcounted by * keeping the buffers as a submission dependency. * The hwcontext is guaranteed to not be freed until all frames are freed * in the frames_unint function. * When downloading to buffer, do this synchronously and wait for the * queue submission to finish executing */ if (!to_buf) { int ref; for (ref = 0; ref < AV_NUM_DATA_POINTERS; ref++) { if (!f->buf[ref]) break; if ((err = add_buf_dep_exec_ctx(hwfc, ectx, &f->buf[ref], 1))) return err; } if (ref && (err = add_buf_dep_exec_ctx(hwfc, ectx, bufs, planes))) return err; return submit_exec_ctx(hwfc, ectx, &s_info, !ref); } else { return submit_exec_ctx(hwfc, ectx, &s_info, 1); } } static int vulkan_transfer_data_from_mem(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src) { int err = 0; AVFrame tmp; AVVkFrame *f = (AVVkFrame *)dst->data[0]; AVHWDeviceContext *dev_ctx = hwfc->device_ctx; AVBufferRef *bufs[AV_NUM_DATA_POINTERS] = { 0 }; const int planes = av_pix_fmt_count_planes(src->format); int log2_chroma = av_pix_fmt_desc_get(src->format)->log2_chroma_h; VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; int host_mapped[AV_NUM_DATA_POINTERS] = { 0 }; int map_host = p->extensions & EXT_EXTERNAL_HOST_MEMORY; if ((src->format != AV_PIX_FMT_NONE && !av_vkfmt_from_pixfmt(src->format))) { av_log(hwfc, AV_LOG_ERROR, "Unsupported source pixel format!\n"); return AVERROR(EINVAL); } if (src->width > hwfc->width || src->height > hwfc->height) return AVERROR(EINVAL); /* For linear, host visiable images */ if (f->tiling == VK_IMAGE_TILING_LINEAR && f->flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) { AVFrame *map = av_frame_alloc(); if (!map) return AVERROR(ENOMEM); map->format = src->format; err = vulkan_map_frame_to_mem(hwfc, map, dst, AV_HWFRAME_MAP_WRITE); if (err) return err; err = av_frame_copy(map, src); av_frame_free(&map); return err; } /* Create buffers */ for (int i = 0; i < planes; i++) { int h = src->height; int p_height = i > 0 ? AV_CEIL_RSHIFT(h, log2_chroma) : h; size_t p_size = FFABS(src->linesize[i]) * p_height; VkImportMemoryHostPointerInfoEXT import_desc = { .sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT, .handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT, .pHostPointer = src->data[i], }; /* We can only map images with positive stride and alignment appropriate * for the device. */ host_mapped[i] = map_host && src->linesize[i] > 0 && !(p_size % p->hprops.minImportedHostPointerAlignment) && !(((uintptr_t)import_desc.pHostPointer) % p->hprops.minImportedHostPointerAlignment); p_size = host_mapped[i] ? p_size : 0; tmp.linesize[i] = FFABS(src->linesize[i]); err = create_buf(dev_ctx, &bufs[i], p_size, p_height, &tmp.linesize[i], VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, NULL, host_mapped[i] ? &import_desc : NULL); if (err) goto end; } /* Map, copy image to buffer, unmap */ if ((err = map_buffers(dev_ctx, bufs, tmp.data, planes, 0))) goto end; for (int i = 0; i < planes; i++) { int h = src->height; int p_height = i > 0 ? AV_CEIL_RSHIFT(h, log2_chroma) : h; if (host_mapped[i]) continue; av_image_copy_plane(tmp.data[i], tmp.linesize[i], (const uint8_t *)src->data[i], src->linesize[i], FFMIN(tmp.linesize[i], FFABS(src->linesize[i])), p_height); } if ((err = unmap_buffers(dev_ctx, bufs, planes, 1))) goto end; /* Copy buffers to image */ err = transfer_image_buf(hwfc, dst, bufs, tmp.linesize, src->width, src->height, src->format, 0); end: for (int i = 0; i < planes; i++) av_buffer_unref(&bufs[i]); return err; } static int vulkan_transfer_data_to(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src) { av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; switch (src->format) { #if CONFIG_CUDA case AV_PIX_FMT_CUDA: if ((p->extensions & EXT_EXTERNAL_FD_MEMORY) && (p->extensions & EXT_EXTERNAL_FD_SEM)) return vulkan_transfer_data_from_cuda(hwfc, dst, src); #endif default: if (src->hw_frames_ctx) return AVERROR(ENOSYS); else return vulkan_transfer_data_from_mem(hwfc, dst, src); } } #if CONFIG_CUDA static int vulkan_transfer_data_to_cuda(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src) { int err; VkResult ret; CUcontext dummy; AVVkFrame *dst_f; AVVkFrameInternal *dst_int; const int planes = av_pix_fmt_count_planes(hwfc->sw_format); const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(hwfc->sw_format); AVHWFramesContext *cuda_fc = (AVHWFramesContext*)dst->hw_frames_ctx->data; AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx; AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx; AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal; CudaFunctions *cu = cu_internal->cuda_dl; ret = CHECK_CU(cu->cuCtxPushCurrent(cuda_dev->cuda_ctx)); if (ret < 0) { err = AVERROR_EXTERNAL; goto fail; } dst_f = (AVVkFrame *)src->data[0]; err = vulkan_export_to_cuda(hwfc, dst->hw_frames_ctx, src); if (err < 0) { goto fail; } dst_int = dst_f->internal; for (int i = 0; i < planes; i++) { CUDA_MEMCPY2D cpy = { .dstMemoryType = CU_MEMORYTYPE_DEVICE, .dstDevice = (CUdeviceptr)dst->data[i], .dstPitch = dst->linesize[i], .dstY = 0, .srcMemoryType = CU_MEMORYTYPE_ARRAY, .srcArray = dst_int->cu_array[i], .WidthInBytes = (i > 0 ? AV_CEIL_RSHIFT(hwfc->width, desc->log2_chroma_w) : hwfc->width) * desc->comp[i].step, .Height = i > 0 ? AV_CEIL_RSHIFT(hwfc->height, desc->log2_chroma_h) : hwfc->height, }; ret = CHECK_CU(cu->cuMemcpy2DAsync(&cpy, cuda_dev->stream)); if (ret < 0) { err = AVERROR_EXTERNAL; goto fail; } } CHECK_CU(cu->cuCtxPopCurrent(&dummy)); av_log(hwfc, AV_LOG_VERBOSE, "Transfered Vulkan image to CUDA!\n"); return 0; fail: CHECK_CU(cu->cuCtxPopCurrent(&dummy)); vulkan_free_internal(dst_int); dst_f->internal = NULL; av_buffer_unref(&dst->buf[0]); return err; } #endif static int vulkan_transfer_data_to_mem(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src) { int err = 0; AVFrame tmp; AVVkFrame *f = (AVVkFrame *)src->data[0]; AVHWDeviceContext *dev_ctx = hwfc->device_ctx; AVBufferRef *bufs[AV_NUM_DATA_POINTERS] = { 0 }; const int planes = av_pix_fmt_count_planes(dst->format); int log2_chroma = av_pix_fmt_desc_get(dst->format)->log2_chroma_h; VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; int host_mapped[AV_NUM_DATA_POINTERS] = { 0 }; int map_host = p->extensions & EXT_EXTERNAL_HOST_MEMORY; if (dst->width > hwfc->width || dst->height > hwfc->height) return AVERROR(EINVAL); /* For linear, host visiable images */ if (f->tiling == VK_IMAGE_TILING_LINEAR && f->flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) { AVFrame *map = av_frame_alloc(); if (!map) return AVERROR(ENOMEM); map->format = dst->format; err = vulkan_map_frame_to_mem(hwfc, map, src, AV_HWFRAME_MAP_READ); if (err) return err; err = av_frame_copy(dst, map); av_frame_free(&map); return err; } /* Create buffers */ for (int i = 0; i < planes; i++) { int h = dst->height; int p_height = i > 0 ? AV_CEIL_RSHIFT(h, log2_chroma) : h; size_t p_size = FFABS(dst->linesize[i]) * p_height; VkImportMemoryHostPointerInfoEXT import_desc = { .sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT, .handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT, .pHostPointer = dst->data[i], }; /* We can only map images with positive stride and alignment appropriate * for the device. */ host_mapped[i] = map_host && dst->linesize[i] > 0 && !(p_size % p->hprops.minImportedHostPointerAlignment) && !(((uintptr_t)import_desc.pHostPointer) % p->hprops.minImportedHostPointerAlignment); p_size = host_mapped[i] ? p_size : 0; tmp.linesize[i] = FFABS(dst->linesize[i]); err = create_buf(dev_ctx, &bufs[i], p_size, p_height, &tmp.linesize[i], VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, NULL, host_mapped[i] ? &import_desc : NULL); if (err) goto end; } /* Copy image to buffer */ if ((err = transfer_image_buf(hwfc, src, bufs, tmp.linesize, dst->width, dst->height, dst->format, 1))) goto end; /* Map, copy buffer to frame, unmap */ if ((err = map_buffers(dev_ctx, bufs, tmp.data, planes, 1))) goto end; for (int i = 0; i < planes; i++) { int h = dst->height; int p_height = i > 0 ? AV_CEIL_RSHIFT(h, log2_chroma) : h; if (host_mapped[i]) continue; av_image_copy_plane(dst->data[i], dst->linesize[i], (const uint8_t *)tmp.data[i], tmp.linesize[i], FFMIN(tmp.linesize[i], FFABS(dst->linesize[i])), p_height); } err = unmap_buffers(dev_ctx, bufs, planes, 0); end: for (int i = 0; i < planes; i++) av_buffer_unref(&bufs[i]); return err; } static int vulkan_transfer_data_from(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src) { av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; switch (dst->format) { #if CONFIG_CUDA case AV_PIX_FMT_CUDA: if ((p->extensions & EXT_EXTERNAL_FD_MEMORY) && (p->extensions & EXT_EXTERNAL_FD_SEM)) return vulkan_transfer_data_to_cuda(hwfc, dst, src); #endif default: if (dst->hw_frames_ctx) return AVERROR(ENOSYS); else return vulkan_transfer_data_to_mem(hwfc, dst, src); } } static int vulkan_frames_derive_to(AVHWFramesContext *dst_fc, AVHWFramesContext *src_fc, int flags) { return vulkan_frames_init(dst_fc); } AVVkFrame *av_vk_frame_alloc(void) { return av_mallocz(sizeof(AVVkFrame)); } const HWContextType ff_hwcontext_type_vulkan = { .type = AV_HWDEVICE_TYPE_VULKAN, .name = "Vulkan", .device_hwctx_size = sizeof(AVVulkanDeviceContext), .device_priv_size = sizeof(VulkanDevicePriv), .frames_hwctx_size = sizeof(AVVulkanFramesContext), .frames_priv_size = sizeof(VulkanFramesPriv), .device_init = &vulkan_device_init, .device_create = &vulkan_device_create, .device_derive = &vulkan_device_derive, .frames_get_constraints = &vulkan_frames_get_constraints, .frames_init = vulkan_frames_init, .frames_get_buffer = vulkan_get_buffer, .frames_uninit = vulkan_frames_uninit, .transfer_get_formats = vulkan_transfer_get_formats, .transfer_data_to = vulkan_transfer_data_to, .transfer_data_from = vulkan_transfer_data_from, .map_to = vulkan_map_to, .map_from = vulkan_map_from, .frames_derive_to = &vulkan_frames_derive_to, .pix_fmts = (const enum AVPixelFormat []) { AV_PIX_FMT_VULKAN, AV_PIX_FMT_NONE }, };