/* * Copyright (c) 2019 Lynne * Power of two FFT: * Copyright (c) 2008 Loren Merritt * Copyright (c) 2002 Fabrice Bellard * Partly based on libdjbfft by D. J. Bernstein * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /* All costabs for a type are defined here */ COSTABLE(16); COSTABLE(32); COSTABLE(64); COSTABLE(128); COSTABLE(256); COSTABLE(512); COSTABLE(1024); COSTABLE(2048); COSTABLE(4096); COSTABLE(8192); COSTABLE(16384); COSTABLE(32768); COSTABLE(65536); COSTABLE(131072); DECLARE_ALIGNED(32, FFTComplex, TX_NAME(ff_cos_53))[4]; static FFTSample * const cos_tabs[18] = { NULL, NULL, NULL, NULL, TX_NAME(ff_cos_16), TX_NAME(ff_cos_32), TX_NAME(ff_cos_64), TX_NAME(ff_cos_128), TX_NAME(ff_cos_256), TX_NAME(ff_cos_512), TX_NAME(ff_cos_1024), TX_NAME(ff_cos_2048), TX_NAME(ff_cos_4096), TX_NAME(ff_cos_8192), TX_NAME(ff_cos_16384), TX_NAME(ff_cos_32768), TX_NAME(ff_cos_65536), TX_NAME(ff_cos_131072), }; static av_always_inline void init_cos_tabs_idx(int index) { int m = 1 << index; double freq = 2*M_PI/m; FFTSample *tab = cos_tabs[index]; for(int i = 0; i <= m/4; i++) tab[i] = RESCALE(cos(i*freq)); for(int i = 1; i < m/4; i++) tab[m/2 - i] = tab[i]; } #define INIT_FF_COS_TABS_FUNC(index, size) \ static av_cold void init_cos_tabs_ ## size (void) \ { \ init_cos_tabs_idx(index); \ } INIT_FF_COS_TABS_FUNC(4, 16) INIT_FF_COS_TABS_FUNC(5, 32) INIT_FF_COS_TABS_FUNC(6, 64) INIT_FF_COS_TABS_FUNC(7, 128) INIT_FF_COS_TABS_FUNC(8, 256) INIT_FF_COS_TABS_FUNC(9, 512) INIT_FF_COS_TABS_FUNC(10, 1024) INIT_FF_COS_TABS_FUNC(11, 2048) INIT_FF_COS_TABS_FUNC(12, 4096) INIT_FF_COS_TABS_FUNC(13, 8192) INIT_FF_COS_TABS_FUNC(14, 16384) INIT_FF_COS_TABS_FUNC(15, 32768) INIT_FF_COS_TABS_FUNC(16, 65536) INIT_FF_COS_TABS_FUNC(17, 131072) static av_cold void ff_init_53_tabs(void) { TX_NAME(ff_cos_53)[0] = (FFTComplex){ RESCALE(cos(2 * M_PI / 12)), RESCALE(cos(2 * M_PI / 12)) }; TX_NAME(ff_cos_53)[1] = (FFTComplex){ RESCALE(cos(2 * M_PI / 6)), RESCALE(cos(2 * M_PI / 6)) }; TX_NAME(ff_cos_53)[2] = (FFTComplex){ RESCALE(cos(2 * M_PI / 5)), RESCALE(sin(2 * M_PI / 5)) }; TX_NAME(ff_cos_53)[3] = (FFTComplex){ RESCALE(cos(2 * M_PI / 10)), RESCALE(sin(2 * M_PI / 10)) }; } static CosTabsInitOnce cos_tabs_init_once[] = { { ff_init_53_tabs, AV_ONCE_INIT }, { NULL }, { NULL }, { NULL }, { init_cos_tabs_16, AV_ONCE_INIT }, { init_cos_tabs_32, AV_ONCE_INIT }, { init_cos_tabs_64, AV_ONCE_INIT }, { init_cos_tabs_128, AV_ONCE_INIT }, { init_cos_tabs_256, AV_ONCE_INIT }, { init_cos_tabs_512, AV_ONCE_INIT }, { init_cos_tabs_1024, AV_ONCE_INIT }, { init_cos_tabs_2048, AV_ONCE_INIT }, { init_cos_tabs_4096, AV_ONCE_INIT }, { init_cos_tabs_8192, AV_ONCE_INIT }, { init_cos_tabs_16384, AV_ONCE_INIT }, { init_cos_tabs_32768, AV_ONCE_INIT }, { init_cos_tabs_65536, AV_ONCE_INIT }, { init_cos_tabs_131072, AV_ONCE_INIT }, }; static av_cold void init_cos_tabs(int index) { ff_thread_once(&cos_tabs_init_once[index].control, cos_tabs_init_once[index].func); } static av_always_inline void fft3(FFTComplex *out, FFTComplex *in, ptrdiff_t stride) { FFTComplex tmp[2]; #ifdef TX_INT32 int64_t mtmp[4]; #endif BF(tmp[0].re, tmp[1].im, in[1].im, in[2].im); BF(tmp[0].im, tmp[1].re, in[1].re, in[2].re); out[0*stride].re = in[0].re + tmp[1].re; out[0*stride].im = in[0].im + tmp[1].im; #ifdef TX_INT32 mtmp[0] = (int64_t)TX_NAME(ff_cos_53)[0].re * tmp[0].re; mtmp[1] = (int64_t)TX_NAME(ff_cos_53)[0].im * tmp[0].im; mtmp[2] = (int64_t)TX_NAME(ff_cos_53)[1].re * tmp[1].re; mtmp[3] = (int64_t)TX_NAME(ff_cos_53)[1].re * tmp[1].im; out[1*stride].re = in[0].re - (mtmp[2] + mtmp[0] + 0x40000000 >> 31); out[1*stride].im = in[0].im - (mtmp[3] - mtmp[1] + 0x40000000 >> 31); out[2*stride].re = in[0].re - (mtmp[2] - mtmp[0] + 0x40000000 >> 31); out[2*stride].im = in[0].im - (mtmp[3] + mtmp[1] + 0x40000000 >> 31); #else tmp[0].re = TX_NAME(ff_cos_53)[0].re * tmp[0].re; tmp[0].im = TX_NAME(ff_cos_53)[0].im * tmp[0].im; tmp[1].re = TX_NAME(ff_cos_53)[1].re * tmp[1].re; tmp[1].im = TX_NAME(ff_cos_53)[1].re * tmp[1].im; out[1*stride].re = in[0].re - tmp[1].re + tmp[0].re; out[1*stride].im = in[0].im - tmp[1].im - tmp[0].im; out[2*stride].re = in[0].re - tmp[1].re - tmp[0].re; out[2*stride].im = in[0].im - tmp[1].im + tmp[0].im; #endif } #define DECL_FFT5(NAME, D0, D1, D2, D3, D4) \ static av_always_inline void NAME(FFTComplex *out, FFTComplex *in, \ ptrdiff_t stride) \ { \ FFTComplex z0[4], t[6]; \ \ BF(t[1].im, t[0].re, in[1].re, in[4].re); \ BF(t[1].re, t[0].im, in[1].im, in[4].im); \ BF(t[3].im, t[2].re, in[2].re, in[3].re); \ BF(t[3].re, t[2].im, in[2].im, in[3].im); \ \ out[D0*stride].re = in[0].re + t[0].re + t[2].re; \ out[D0*stride].im = in[0].im + t[0].im + t[2].im; \ \ SMUL(t[4].re, t[0].re, TX_NAME(ff_cos_53)[2].re, TX_NAME(ff_cos_53)[3].re, t[2].re, t[0].re); \ SMUL(t[4].im, t[0].im, TX_NAME(ff_cos_53)[2].re, TX_NAME(ff_cos_53)[3].re, t[2].im, t[0].im); \ CMUL(t[5].re, t[1].re, TX_NAME(ff_cos_53)[2].im, TX_NAME(ff_cos_53)[3].im, t[3].re, t[1].re); \ CMUL(t[5].im, t[1].im, TX_NAME(ff_cos_53)[2].im, TX_NAME(ff_cos_53)[3].im, t[3].im, t[1].im); \ \ BF(z0[0].re, z0[3].re, t[0].re, t[1].re); \ BF(z0[0].im, z0[3].im, t[0].im, t[1].im); \ BF(z0[2].re, z0[1].re, t[4].re, t[5].re); \ BF(z0[2].im, z0[1].im, t[4].im, t[5].im); \ \ out[D1*stride].re = in[0].re + z0[3].re; \ out[D1*stride].im = in[0].im + z0[0].im; \ out[D2*stride].re = in[0].re + z0[2].re; \ out[D2*stride].im = in[0].im + z0[1].im; \ out[D3*stride].re = in[0].re + z0[1].re; \ out[D3*stride].im = in[0].im + z0[2].im; \ out[D4*stride].re = in[0].re + z0[0].re; \ out[D4*stride].im = in[0].im + z0[3].im; \ } DECL_FFT5(fft5, 0, 1, 2, 3, 4) DECL_FFT5(fft5_m1, 0, 6, 12, 3, 9) DECL_FFT5(fft5_m2, 10, 1, 7, 13, 4) DECL_FFT5(fft5_m3, 5, 11, 2, 8, 14) static av_always_inline void fft15(FFTComplex *out, FFTComplex *in, ptrdiff_t stride) { FFTComplex tmp[15]; for (int i = 0; i < 5; i++) fft3(tmp + i, in + i*3, 5); fft5_m1(out, tmp + 0, stride); fft5_m2(out, tmp + 5, stride); fft5_m3(out, tmp + 10, stride); } #define BUTTERFLIES(a0,a1,a2,a3) {\ BF(t3, t5, t5, t1);\ BF(a2.re, a0.re, a0.re, t5);\ BF(a3.im, a1.im, a1.im, t3);\ BF(t4, t6, t2, t6);\ BF(a3.re, a1.re, a1.re, t4);\ BF(a2.im, a0.im, a0.im, t6);\ } // force loading all the inputs before storing any. // this is slightly slower for small data, but avoids store->load aliasing // for addresses separated by large powers of 2. #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\ FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\ BF(t3, t5, t5, t1);\ BF(a2.re, a0.re, r0, t5);\ BF(a3.im, a1.im, i1, t3);\ BF(t4, t6, t2, t6);\ BF(a3.re, a1.re, r1, t4);\ BF(a2.im, a0.im, i0, t6);\ } #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\ CMUL(t1, t2, a2.re, a2.im, wre, -wim);\ CMUL(t5, t6, a3.re, a3.im, wre, wim);\ BUTTERFLIES(a0,a1,a2,a3)\ } #define TRANSFORM_ZERO(a0,a1,a2,a3) {\ t1 = a2.re;\ t2 = a2.im;\ t5 = a3.re;\ t6 = a3.im;\ BUTTERFLIES(a0,a1,a2,a3)\ } /* z[0...8n-1], w[1...2n-1] */ #define PASS(name)\ static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\ {\ FFTSample t1, t2, t3, t4, t5, t6;\ int o1 = 2*n;\ int o2 = 4*n;\ int o3 = 6*n;\ const FFTSample *wim = wre+o1;\ n--;\ \ TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\ TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\ do {\ z += 2;\ wre += 2;\ wim -= 2;\ TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\ TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\ } while(--n);\ } PASS(pass) #undef BUTTERFLIES #define BUTTERFLIES BUTTERFLIES_BIG PASS(pass_big) #define DECL_FFT(n,n2,n4)\ static void fft##n(FFTComplex *z)\ {\ fft##n2(z);\ fft##n4(z+n4*2);\ fft##n4(z+n4*3);\ pass(z,TX_NAME(ff_cos_##n),n4/2);\ } static void fft2(FFTComplex *z) { FFTComplex tmp; BF(tmp.re, z[0].re, z[0].re, z[1].re); BF(tmp.im, z[0].im, z[0].im, z[1].im); z[1] = tmp; } static void fft4(FFTComplex *z) { FFTSample t1, t2, t3, t4, t5, t6, t7, t8; BF(t3, t1, z[0].re, z[1].re); BF(t8, t6, z[3].re, z[2].re); BF(z[2].re, z[0].re, t1, t6); BF(t4, t2, z[0].im, z[1].im); BF(t7, t5, z[2].im, z[3].im); BF(z[3].im, z[1].im, t4, t8); BF(z[3].re, z[1].re, t3, t7); BF(z[2].im, z[0].im, t2, t5); } static void fft8(FFTComplex *z) { FFTSample t1, t2, t3, t4, t5, t6; fft4(z); BF(t1, z[5].re, z[4].re, -z[5].re); BF(t2, z[5].im, z[4].im, -z[5].im); BF(t5, z[7].re, z[6].re, -z[7].re); BF(t6, z[7].im, z[6].im, -z[7].im); BUTTERFLIES(z[0],z[2],z[4],z[6]); TRANSFORM(z[1],z[3],z[5],z[7],RESCALE(M_SQRT1_2),RESCALE(M_SQRT1_2)); } static void fft16(FFTComplex *z) { FFTSample t1, t2, t3, t4, t5, t6; FFTSample cos_16_1 = TX_NAME(ff_cos_16)[1]; FFTSample cos_16_3 = TX_NAME(ff_cos_16)[3]; fft8(z); fft4(z+8); fft4(z+12); TRANSFORM_ZERO(z[0],z[4],z[8],z[12]); TRANSFORM(z[2],z[6],z[10],z[14],RESCALE(M_SQRT1_2),RESCALE(M_SQRT1_2)); TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3); TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1); } DECL_FFT(32,16,8) DECL_FFT(64,32,16) DECL_FFT(128,64,32) DECL_FFT(256,128,64) DECL_FFT(512,256,128) #define pass pass_big DECL_FFT(1024,512,256) DECL_FFT(2048,1024,512) DECL_FFT(4096,2048,1024) DECL_FFT(8192,4096,2048) DECL_FFT(16384,8192,4096) DECL_FFT(32768,16384,8192) DECL_FFT(65536,32768,16384) DECL_FFT(131072,65536,32768) static void (* const fft_dispatch[])(FFTComplex*) = { NULL, fft2, fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024, fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, fft131072 }; #define DECL_COMP_FFT(N) \ static void compound_fft_##N##xM(AVTXContext *s, void *_out, \ void *_in, ptrdiff_t stride) \ { \ const int m = s->m, *in_map = s->pfatab, *out_map = in_map + N*m; \ FFTComplex *in = _in; \ FFTComplex *out = _out; \ FFTComplex fft##N##in[N]; \ void (*fftp)(FFTComplex *z) = fft_dispatch[av_log2(m)]; \ \ for (int i = 0; i < m; i++) { \ for (int j = 0; j < N; j++) \ fft##N##in[j] = in[in_map[i*N + j]]; \ fft##N(s->tmp + s->revtab[i], fft##N##in, m); \ } \ \ for (int i = 0; i < N; i++) \ fftp(s->tmp + m*i); \ \ for (int i = 0; i < N*m; i++) \ out[i] = s->tmp[out_map[i]]; \ } DECL_COMP_FFT(3) DECL_COMP_FFT(5) DECL_COMP_FFT(15) static void monolithic_fft(AVTXContext *s, void *_out, void *_in, ptrdiff_t stride) { FFTComplex *in = _in; FFTComplex *out = _out; int m = s->m, mb = av_log2(m); for (int i = 0; i < m; i++) out[s->revtab[i]] = in[i]; fft_dispatch[mb](out); } #define DECL_COMP_IMDCT(N) \ static void compound_imdct_##N##xM(AVTXContext *s, void *_dst, void *_src, \ ptrdiff_t stride) \ { \ FFTComplex fft##N##in[N]; \ FFTComplex *z = _dst, *exp = s->exptab; \ const int m = s->m, len8 = N*m >> 1; \ const int *in_map = s->pfatab, *out_map = in_map + N*m; \ const FFTSample *src = _src, *in1, *in2; \ void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)]; \ \ stride /= sizeof(*src); /* To convert it from bytes */ \ in1 = src; \ in2 = src + ((N*m*2) - 1) * stride; \ \ for (int i = 0; i < m; i++) { \ for (int j = 0; j < N; j++) { \ const int k = in_map[i*N + j]; \ FFTComplex tmp = { in2[-k*stride], in1[k*stride] }; \ CMUL3(fft##N##in[j], tmp, exp[k >> 1]); \ } \ fft##N(s->tmp + s->revtab[i], fft##N##in, m); \ } \ \ for (int i = 0; i < N; i++) \ fftp(s->tmp + m*i); \ \ for (int i = 0; i < len8; i++) { \ const int i0 = len8 + i, i1 = len8 - i - 1; \ const int s0 = out_map[i0], s1 = out_map[i1]; \ FFTComplex src1 = { s->tmp[s1].im, s->tmp[s1].re }; \ FFTComplex src0 = { s->tmp[s0].im, s->tmp[s0].re }; \ \ CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re); \ CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re); \ } \ } DECL_COMP_IMDCT(3) DECL_COMP_IMDCT(5) DECL_COMP_IMDCT(15) #define DECL_COMP_MDCT(N) \ static void compound_mdct_##N##xM(AVTXContext *s, void *_dst, void *_src, \ ptrdiff_t stride) \ { \ FFTSample *src = _src, *dst = _dst; \ FFTComplex *exp = s->exptab, tmp, fft##N##in[N]; \ const int m = s->m, len4 = N*m, len3 = len4 * 3, len8 = len4 >> 1; \ const int *in_map = s->pfatab, *out_map = in_map + N*m; \ void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)]; \ \ stride /= sizeof(*dst); \ \ for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */ \ for (int j = 0; j < N; j++) { \ const int k = in_map[i*N + j]; \ if (k < len4) { \ tmp.re = FOLD(-src[ len4 + k], src[1*len4 - 1 - k]); \ tmp.im = FOLD(-src[ len3 + k], -src[1*len3 - 1 - k]); \ } else { \ tmp.re = FOLD(-src[ len4 + k], -src[5*len4 - 1 - k]); \ tmp.im = FOLD( src[-len4 + k], -src[1*len3 - 1 - k]); \ } \ CMUL(fft##N##in[j].im, fft##N##in[j].re, tmp.re, tmp.im, \ exp[k >> 1].re, exp[k >> 1].im); \ } \ fft##N(s->tmp + s->revtab[i], fft##N##in, m); \ } \ \ for (int i = 0; i < N; i++) \ fftp(s->tmp + m*i); \ \ for (int i = 0; i < len8; i++) { \ const int i0 = len8 + i, i1 = len8 - i - 1; \ const int s0 = out_map[i0], s1 = out_map[i1]; \ FFTComplex src1 = { s->tmp[s1].re, s->tmp[s1].im }; \ FFTComplex src0 = { s->tmp[s0].re, s->tmp[s0].im }; \ \ CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im, \ exp[i0].im, exp[i0].re); \ CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im, \ exp[i1].im, exp[i1].re); \ } \ } DECL_COMP_MDCT(3) DECL_COMP_MDCT(5) DECL_COMP_MDCT(15) static void monolithic_imdct(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { FFTComplex *z = _dst, *exp = s->exptab; const int m = s->m, len8 = m >> 1; const FFTSample *src = _src, *in1, *in2; void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)]; stride /= sizeof(*src); in1 = src; in2 = src + ((m*2) - 1) * stride; for (int i = 0; i < m; i++) { FFTComplex tmp = { in2[-2*i*stride], in1[2*i*stride] }; CMUL3(z[s->revtab[i]], tmp, exp[i]); } fftp(z); for (int i = 0; i < len8; i++) { const int i0 = len8 + i, i1 = len8 - i - 1; FFTComplex src1 = { z[i1].im, z[i1].re }; FFTComplex src0 = { z[i0].im, z[i0].re }; CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re); CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re); } } static void monolithic_mdct(AVTXContext *s, void *_dst, void *_src, ptrdiff_t stride) { FFTSample *src = _src, *dst = _dst; FFTComplex *exp = s->exptab, tmp, *z = _dst; const int m = s->m, len4 = m, len3 = len4 * 3, len8 = len4 >> 1; void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)]; stride /= sizeof(*dst); for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */ const int k = 2*i; if (k < len4) { tmp.re = FOLD(-src[ len4 + k], src[1*len4 - 1 - k]); tmp.im = FOLD(-src[ len3 + k], -src[1*len3 - 1 - k]); } else { tmp.re = FOLD(-src[ len4 + k], -src[5*len4 - 1 - k]); tmp.im = FOLD( src[-len4 + k], -src[1*len3 - 1 - k]); } CMUL(z[s->revtab[i]].im, z[s->revtab[i]].re, tmp.re, tmp.im, exp[i].re, exp[i].im); } fftp(z); for (int i = 0; i < len8; i++) { const int i0 = len8 + i, i1 = len8 - i - 1; FFTComplex src1 = { z[i1].re, z[i1].im }; FFTComplex src0 = { z[i0].re, z[i0].im }; CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im, exp[i0].im, exp[i0].re); CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im, exp[i1].im, exp[i1].re); } } static int gen_mdct_exptab(AVTXContext *s, int len4, double scale) { const double theta = (scale < 0 ? len4 : 0) + 1.0/8.0; if (!(s->exptab = av_malloc_array(len4, sizeof(*s->exptab)))) return AVERROR(ENOMEM); scale = sqrt(fabs(scale)); for (int i = 0; i < len4; i++) { const double alpha = M_PI_2 * (i + theta) / len4; s->exptab[i].re = RESCALE(cos(alpha) * scale); s->exptab[i].im = RESCALE(sin(alpha) * scale); } return 0; } int TX_NAME(ff_tx_init_mdct_fft)(AVTXContext *s, av_tx_fn *tx, enum AVTXType type, int inv, int len, const void *scale, uint64_t flags) { const int is_mdct = ff_tx_type_is_mdct(type); int err, n = 1, m = 1, max_ptwo = 1 << (FF_ARRAY_ELEMS(fft_dispatch) - 1); if (is_mdct) len >>= 1; #define CHECK_FACTOR(DST, FACTOR, SRC) \ if (DST == 1 && !(SRC % FACTOR)) { \ DST = FACTOR; \ SRC /= FACTOR; \ } CHECK_FACTOR(n, 15, len) CHECK_FACTOR(n, 5, len) CHECK_FACTOR(n, 3, len) #undef CHECK_FACTOR /* len must be a power of two now */ if (!(len & (len - 1)) && len >= 2 && len <= max_ptwo) { m = len; len = 1; } s->n = n; s->m = m; s->inv = inv; s->type = type; /* Filter out direct 3, 5 and 15 transforms, too niche */ if (len > 1 || m == 1) { av_log(NULL, AV_LOG_ERROR, "Unsupported transform size: n = %i, " "m = %i, residual = %i!\n", n, m, len); return AVERROR(EINVAL); } else if (n > 1 && m > 1) { /* 2D transform case */ if ((err = ff_tx_gen_compound_mapping(s))) return err; if (!(s->tmp = av_malloc(n*m*sizeof(*s->tmp)))) return AVERROR(ENOMEM); *tx = n == 3 ? compound_fft_3xM : n == 5 ? compound_fft_5xM : compound_fft_15xM; if (is_mdct) *tx = n == 3 ? inv ? compound_imdct_3xM : compound_mdct_3xM : n == 5 ? inv ? compound_imdct_5xM : compound_mdct_5xM : inv ? compound_imdct_15xM : compound_mdct_15xM; } else { /* Direct transform case */ *tx = monolithic_fft; if (is_mdct) *tx = inv ? monolithic_imdct : monolithic_mdct; } if (n != 1) init_cos_tabs(0); if (m != 1) { ff_tx_gen_ptwo_revtab(s); for (int i = 4; i <= av_log2(m); i++) init_cos_tabs(i); } if (is_mdct) return gen_mdct_exptab(s, n*m, *((SCALE_TYPE *)scale)); return 0; }