From 63b0e9edceec10fa41ec33393a1515a5ff444277 Mon Sep 17 00:00:00 2001
From: Mike Galbraith <umgwanakikbuti@gmail.com>
Date: Tue, 14 Jul 2015 17:39:50 +0200
Subject: [PATCH] sched/fair: Beef up wake_wide()
Josef Bacik reported that Facebook sees better performance with their
1:N load (1 dispatch/node, N workers/node) when carrying an old patch
to try very hard to wake to an idle CPU. While looking at wake_wide(),
I noticed that it doesn't pay attention to the wakeup of a many partner
waker, returning 1 only when waking one of its many partners.
Correct that, letting explicit domain flags override the heuristic.
While at it, adjust task_struct bits, we don't need a 64-bit counter.
Tested-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com>
[ Tidy things up. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-team<Kernel-team@fb.com>
Cc: morten.rasmussen@arm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1436888390.7983.49.camel@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
---
include/linux/sched.h | 4 +--
kernel/sched/fair.c | 67 ++++++++++++++++++++++++++-------------------------
2 files changed, 36 insertions(+), 35 deletions(-)
diff --git b/include/linux/sched.h a/include/linux/sched.h
index 65a8a86..7412070 100644
--- b/include/linux/sched.h
+++ a/include/linux/sched.h
@@ -1387,9 +1387,9 @@ struct task_struct {
#ifdef CONFIG_SMP
struct llist_node wake_entry;
int on_cpu;
- unsigned int wakee_flips;
- unsigned long wakee_flip_decay_ts;
struct task_struct *last_wakee;
+ unsigned long wakee_flips;
+ unsigned long wakee_flip_decay_ts;
int wake_cpu;
#endif
diff --git b/kernel/sched/fair.c a/kernel/sched/fair.c
index ea23f9f..8b384b8d 100644
--- b/kernel/sched/fair.c
+++ a/kernel/sched/fair.c
@@ -4659,29 +4659,26 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
#endif
-/*
- * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
- * A waker of many should wake a different task than the one last awakened
- * at a frequency roughly N times higher than one of its wakees. In order
- * to determine whether we should let the load spread vs consolodating to
- * shared cache, we look for a minimum 'flip' frequency of llc_size in one
- * partner, and a factor of lls_size higher frequency in the other. With
- * both conditions met, we can be relatively sure that the relationship is
- * non-monogamous, with partner count exceeding socket size. Waker/wakee
- * being client/server, worker/dispatcher, interrupt source or whatever is
- * irrelevant, spread criteria is apparent partner count exceeds socket size.
- */
static int wake_wide(struct task_struct *p)
{
- unsigned int master = current->wakee_flips;
- unsigned int slave = p->wakee_flips;
int factor = this_cpu_read(sd_llc_size);
- if (master < slave)
- swap(master, slave);
- if (slave < factor || master < slave * factor)
- return 0;
- return 1;
+ /*
+ * Yeah, it's the switching-frequency, could means many wakee or
+ * rapidly switch, use factor here will just help to automatically
+ * adjust the loose-degree, so bigger node will lead to more pull.
+ */
+ if (p->wakee_flips > factor) {
+ /*
+ * wakee is somewhat hot, it needs certain amount of cpu
+ * resource, so if waker is far more hot, prefer to leave
+ * it alone.
+ */
+ if (current->wakee_flips > (factor * p->wakee_flips))
+ return 1;
+ }
+
+ return 0;
}
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
@@ -4693,6 +4690,13 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
unsigned long weight;
int balanced;
+ /*
+ * If we wake multiple tasks be careful to not bounce
+ * ourselves around too much.
+ */
+ if (wake_wide(p))
+ return 0;
+
idx = sd->wake_idx;
this_cpu = smp_processor_id();
prev_cpu = task_cpu(p);
@@ -4953,17 +4957,17 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
{
struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
int cpu = smp_processor_id();
- int new_cpu = prev_cpu;
+ int new_cpu = cpu;
int want_affine = 0;
int sync = wake_flags & WF_SYNC;
if (sd_flag & SD_BALANCE_WAKE)
- want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
+ want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
rcu_read_lock();
for_each_domain(cpu, tmp) {
if (!(tmp->flags & SD_LOAD_BALANCE))
- break;
+ continue;
/*
* If both cpu and prev_cpu are part of this domain,
@@ -4977,21 +4981,17 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
if (tmp->flags & sd_flag)
sd = tmp;
- else if (!want_affine)
- break;
}
- if (affine_sd) {
- sd = NULL; /* Prefer wake_affine over balance flags */
- if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
- new_cpu = cpu;
- }
+ if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
+ prev_cpu = cpu;
- if (!sd) {
- if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
- new_cpu = select_idle_sibling(p, new_cpu);
+ if (sd_flag & SD_BALANCE_WAKE) {
+ new_cpu = select_idle_sibling(p, prev_cpu);
+ goto unlock;
+ }
- } else while (sd) {
+ while (sd) {
struct sched_group *group;
int weight;
@@ -5025,6 +5025,7 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
}
/* while loop will break here if sd == NULL */
}
+unlock:
rcu_read_unlock();
return new_cpu;
--
1.9.1