MySQL Connector/Python

MySQL Connector/Python
Abstract
This manual describes MySQL Connector/Python.

Document generated on: 2012-09-07 (revision: 32128)

Table of Contents

Preface and Legal NOTICEScoiiuiieiiiii ettt ettt e e e et e e et e e e aea s %
1. MySQL CONNECLOMPYNON ...ttt ettt e et e e et et e e e e e e eeaans 1
2. CONNECIOI/PYINON VEISIONSciiitii ettt e et ettt e e et et e e et et e e e eebanaeeenns 3
3. ConNector/Python INSTAIIALIONiiiiiie et e et ettt e e e et e e eent e eees 5
Installing Connector/Python Source Distribution on Linux, UNIX, or OS Xccoiiiiiiiiiiiiiiiiieieeen, 5
Installing Connector/Python Source Distribution on Microsoft Windowsccoociiiiiiiiiiiineeines 6
Verifying Your Connector/Python INStallationoiiiiiiiiiiii e 6
4. Connector/Python Coding EXAmMPIES ... e 7
Connecting to MySQL Using ConNECLOr/PYINONcoouuiiiiiiiiieiii et 7
Creating Tables Using ConNECION/PYINONiiiiiiiiii e 8
Inserting Data Using CoNNECIOIN/PYINONuuuiiiiiiiiieii ettt e e 10
Querying Data Using CoNNECLOr/PYINONcouuiiiiiiii it 11
5. CoNNECIOI/PYINON TULOAIS .. .cevuiiiiiii ittt e e e e e e e ne s 13
Tutorial: Raise employee's salary using a buffering CUrsorcoooeiiiiiieiiiiin e 13
6. Connector/Python ConNECtioN AFGUMENTSiiiiiiiieeiiie ettt e et e e et e e et eeebe s 15
7. ConNector/PYython API REFEIENCEot 19
Errors and EXCEPLIONSocuuuiiiiiii ettt 21
MOTUIE BT T OF COUR ittt ettt et et e et e e e 22
EXCEPLION ©F I OF S. Bl T OF oottt ettt et e e e e e e re s 22
EXCePUiON €5 1 O S. WA NI NQ ettt et ettt e e e b s 23
EXception errors. | NEerf AaCeEN I OF oo 23
Exception errors. Dat @DaSEEN I OF oieuuuiiiiiii e 23
EXception errors. I NEEr NAl BN T OF oo 23
Exception errors. Qperati onal Er 1O ..o 23
Exception errors. Progranmmm NGEN I OF ..o 24
EXception errors. | NEegri TYEN T OF et 24
EXCeplion €r 105 S. DAl @ET I OF ouuuiiiiiiii et 24
Exception errors. NOt SUPPOTt @AEN T OF oiiiiiiiiiiiiii e e 24
Function err or s. cust om error _excepti on(error=None, exception=None) 24
Class connecti on. MySQLCONNECT i ON oeuuuiiiiiiiiieieii et et e et e e e e e ene s 25
Constructor connect i on. MySQLCoNNeCt i ON(* * KWAK GS) .veverviieiiiiiieeeiin e 25
Method MySQLCONNECT T ON. Cl OSE() ieieeiieeiiii et 25
Method MySQLConnect i on. confi g(* * KWK gS) ..veierriiieiiiiiieeeiie et 25
Method MySQLConnect i on. CONNECT (** KWAK GS) ieverrruieiieiiieiieii e et e e e eenee 25
Method MySQLCONNECT T ON. COMMI T (1) 1evereiieiiiii ettt e 25
Method My SQLConnect i on. cur sor (buf f ered=None, raw=None,
CUI SOF _Cl @SSTINOME) .euiiiiiii ettt ettt e et ettt e et e et e e e e e e e e enba e eeeneas 26
Method My SQLConnect i on. cnd_change_user (usernane='", password="",
dat abase="", Char SEl =33) .. e 26
Method MySQLConnect i on. cmd_debug() oo 26
Method MySQLConnecti on. cnd_i ni t _db(dat abase)ccccooveeeiiiiiiiiiiiiiiiees 26
Method MySQLCoNNECt i ON. CIMTO_PI NO() wrrniieiiieeeei e 26
Method MySQLConnect i on. cmd_process_i NFO() ooeerrieiiiiiiieiii e 27
Method MySQLConnecti on. cnd_process_Ki Il (mysqgl _pid) ..coooiieeiiiiiiiiiiiecie, 27
Method MySQLCONNECT T ON. CIMTO_QUI T (1) wernnieeieie e 27
Method MySQLConnecti on. crmd_query(sStat @mMBNnt) ...cooeeiieiiiiiiieee e 27
Method MySQLConnection. cnd_query_iter(statenent)ccooooiiviiiiiiiniiiiiinneeciien, 27
Method MySQLConnecti on. crmd_ref resh(opti ONS) ..oiiiiiiiiiiiiiiiei e 28
Method MySQLConnect i on. cmd_Shut dOWN () eeeeuiiiiiiiieieii e 28
Method MySQLConnect i on. CM_St at i ST CS() wvrererruiieiieiiieiieiie e 28
Method MySQLConnect i 0N. di SCONNECT () ieieiirnieiieiii e 28

MySQL Connector/Python

Method MySQLConnection. get _rows(Count =NONE)ccivviiiiiiieiiiieiiii e e e 28
Method MySQLCONNECT I ON. GET T OW() weureiunieiiieeiitieeei e e e e e e e e et e e e et e e e e eaneeeanes 28
Method MySQLConnection. get_server _iNfo() .o 29
Method MySQLConnecti on. get _Server _VErSi ON() covicioieriieeeiiieeiiieeeiee e e eaineeaneens 29
Method MySQLConnecti on. i s _CONNECE €A() tivvriiiiieiiieeeii i e e e eens 29
Method MySQ_.Connection.isset _client_flag(flag) ..ccoooorriiiiiiiniiiiniiiieiees 29
Method MySQ_.Connection. pi ng(attenpts=1, del ay=0)ccoccceiririiiiriineriinnieieennnnn. 29
Method MySQLConnecti on. reconnect (attenpts=1, del ay=0)ccceevrrivirrnernnnrrnn. 29
Method MySQLConnecti on. rol 1 Back() .o 30
Method MySQLConnecti on. set _charset _col | ati on(char set =None,
Lo oY I = LA T 0] o = 30
Method MySQ.Connection.set_client _flags(flags) .cocccooiiiiiiiiiiiiiiiii e 30
Property MySQLConNect i ON. Ut OCOMYT T couuiiuiiiii e e e e e e e eans 30
Property MySQLConnect i ON. Char SEt _NAITEiiuiiiiiii e e e e 31
Property MySQLConnecti on. col | ati ON_NAIME . .ccoiiiiii e 31
Property MySQLConnect i on. CONNECT T ON_i @ ..ovviiiiiiiiii i e e 31
Property MySQLConnect i 0N. dat @abasSec.cviuiiiiiiiieei e 31
Property MySQLConnect i ON. get WAl NI NOS tivuiiiieiiieiiee e eee e e eee e e e e e eaneenaeens 31
Property MySQLConnecti oNn. rai S&_0N_WAI Ni NS ..eeuieeeieiieieeiieeiee e e e eaneeaneenns 32
Property MySQLConnect i ON. SErver _NOSt ..o 32
Property MySQLCONNECT I ON. SEI VeI PO T iiiiiiiie i e e e e e e e e e eans 32
Property MySQLConNect i 0N. SOl _MDUE .uiieiiiiii e e e eenes 32
Property MySQLCONNECT I ON. 11 IMB_ZONE ..ivuiiie i eei et et e e e e e e et e e e e e eenns 33
Property MySQLCoNNECt I ON. UNT X_SOCKET iiuiiiiiii i e e e 33
Property My SQLCONNECT | ON. USEI 1uuiiuiiiiei et e et eeeaaannas 33
Class CUT SOT . MY SO CUI SOT wuuiiitiieiti ettt et e st e e et e e e e e st e e et e e e e e et e e et e e at e e et e e et e eean e eaneeanns 33
CoNStructor CUr SOT . My SQLCUT SOT wuiiuiiiieii e et e e e e e e e e e e e e et e et e et e anaeanns 33
Method MySQLCur sor. cal | proc(procnanmg, argsS=()) ceeeeirereiiierriieeiiiereiiieeneennnnns 33
Method MySQLCUFN SOT . Cl OSE(1) trruiiiieiiiiei et e et e e e e e e e e e e e e e ean s 34
Method MySQLCur sor . execut e(oper ati on, parans=None, nulti=Fal se) 34
Method MySQLCur sor . execut emany(operati on, Seq_parans)ccccoceeeeeverenneennnnenn 34
Method MySQLCUr sor. f et Chal | () cuviviiei e 35
Method MySQLCuUr sor . f et ChMBNY (SI ZEZL) iiiiiiiiii e 35
Method MySQLCUr SOT . e CRONE() wuviiiiiieiii e e e 35
Method MySQLCuUr sor . f et ChWar N NGS () cvvviiiiiii e e 36
Method MySQLCUr sor. St ored _reSUl T S(() v e e 36
Property MySQLCUI SO . COl UMM_NAIMES .uuiiiiiiiieieeieeeie et e eee e e e e e e e e e s et e e e eenaenaeenns 36
Property MySQLCUI SOI . ST Al BITBNT iuuiiii e e 37
Property MySQLCUI SOF . Wi T T OWS oiuniiiici e e e e e e e e eaeaans 37
Class cursor. MySQLCUr SOr BUf f €5 €0 ...uuiiuniiiii i e e e 37
Class const ant's. Cli €NEFI @0 couuiiiiiiiiiiici e e e e et et e e e eeas 37
Class CONSt ANt S. Fi @l ATy PO it e e e e e e et e e e e e e eaeas 38
Class CONSt ANt S. SOLIMDAE .uiiviiiiiiiie et ettt et e e et e et e et e et e et e et eaaesaeeans 38
Class coNSt ant S. Char @CTE €5 SET .iiuuuiiiiiiiii e e e e e eeeaea s 38
Class constant s. Ref reShOPL i ON ..uuiiiiiiiii i e e e 38
8. MySQL Connector/Python Change HiStOIYc.uiiiiiiiiii e e e 41

Preface and Legal Notices

This manual describes MySQL Connector/Python, a self-contained driver for communicating between
Python programs and MySQL servers.

Legal Notices

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and

technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be
subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which
may create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe
use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark of Oracle
Corporation and/or its affiliates, and shall not be used without Oracle's express written authorization. Other
names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

This documentation is in prerelease status and is intended for demonstration and preliminary use only.

It may not be specific to the hardware on which you are using the software. Oracle Corporation and its
affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this
documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this
documentation.

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement

Legal Notices

only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or functionality
described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this material is subject to the terms and conditions of your
Oracle Software License and Service Agreement, which has been executed and with which you agree

to comply. This document and information contained herein may not be disclosed, copied, reproduced,

or distributed to anyone outside Oracle without prior written consent of Oracle or as specifically provided
below. This document is not part of your license agreement nor can it be incorporated into any contractual
agreement with Oracle or its subsidiaries or affiliates.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

For more information on the terms of this license, or for details on how the MySQL documentation is built
and produced, please visit MySQL Contact & Questions.

For additional licensing information, including licenses for third-party libraries used by MySQL products,
see Preface and Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can
discuss your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other
languages, and downloadable versions in variety of formats, including HTML and PDF formats, see the
MySQL Documentation Library.

vi

http://dev.mysql.com/contact/
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

Chapter 1. MySQL Connector/Python

MySQL Connector/Python allows Python programs to access MySQL databases, using an API that
is compliant with the Python DB API version 2.0. It is written in pure Python and does not have any
dependencies except for the Python Standard Library.

MySQL Connector/Python includes support for:
» Almost all features provided by MySQL Server up to and including MySQL Server version 5.5.

» Converting parameter values back and forth between Python and MySQL data types, for example
Python dat et i me and MySQL DATETI ME. You can turn automatic conversion on for convenience, or off
for optimal performance.

» All MySQL extensions to standard SQL syntax.

» Protocol compression, which enables compressing the data stream between the client and server.
» Connections using TCP/IP sockets and on Unix using Unix sockets.

» Secure TCP/IP connections using SSL.

 Self-contained driver. Connector/Python does not require the MySQL client library or any Python
modules outside the standard library.

MySQL Connector/Python supports from Python version 2.4 through 2.7, and Python 3.1 and later. Note
that Connector/Python does not support the old MySQL Server authentication methods, which means that
MySQL versions prior to 4.1 will not work.

http://www.python.org/dev/peps/pep-0249/
http://docs.python.org/library/

Chapter 2. Connector/Python Versions

MySQL Connector/Python v1.0.x series is going through a series of beta releases, leading to the first
generally available (GA) version (not released yet). Any development releases prior to general availability
will not be supported once the GA version is released.

The following table summarizes the available Connector/Python versions:

Connector/Python MySQL Server version |Python version Status

version

1.0 5.6,5.5(5.1,5.0,4.1) 2.4-2.7; 3.1 and later Recommended version
Note

MySQL server versions within brackets are known to work with Connector/Python,
but are not officially supported. Bugs might not get fixed for those versions.

Chapter 3. Connector/Python Installation

Table of Contents

Installing Connector/Python Source Distribution on Linux, UNIX, of OS Xcoviiiiiiiiiiiiie e, 5
Installing Connector/Python Source Distribution on Microsoft WindOWScooviiiiiiiiiiiiniiiceeees 6
Verifying Your Connector/Python INSEAlAtioncoouiiiiiiiiiii e 6

Connector/Python runs on any platform where Python is installed. Python comes pre-installed on almost
any Linux distribution or UNIX-like system such as Apple Mac OS X and FreeBSD. On Microsoft Windows
systems, you can install Python using the installer found on the Python Download website.

Connector/Python is a pure Python implementation of the MySQL Client/Server protocol, meaning it does
not require any other MySQL client libraries or other components. It also has no third-party dependencies.
If you need SSL support, verify that your Python installation has been compiled using the OpenSSL
libraries.

The installation of Connector/Python is similar on every platform and follows the standard Python
Distribution Utilities or Distutils. Some platforms have specific packaging, for example RPM, and, when
made available, the installation of these will be covered in this manual.

Python terminology regarding distributions:

» Source Distribution is a distribution that contains only source files and is generally platform
independent.

 Built Distribution can be regarded as a binary package. It contains both sources and platform-
independent bytecode.

Installing Connector/Python Source Distribution on Linux, UNIX, or

OS X

On UNIX-like systems such as Linux distributions, Solaris, Apple Mac OS X, and FreeBSD, you can
download Connector/Python as a t ar archive from http://dev.mysql.com/downloads/connector/python/.

To install Connector/Python from the . t ar . gz file, download the latest version and follow these steps:

shel | > gunzi p nysqgl - connect or - pyt hon-1. 0. 6bl. tar. gz
shel | > tar xf nysql-connector-python-1.0.6bl.tar
shel | > cd nysql - connect or - pyt hon- 1. 0. 6b1

shel | > sudo python setup. py instal

On UNIX-like systems, Connector/Python gets installed in the default location / prefi x/ i b/
pyt honX. Y/ si t e- packages/, where pr ef i x is the location where Python was installed and X. Y is the
version of Python. See How installation works in the Python manual.

If you are not sure where Connector/Python was installed, do the following to retrieve the location:

shel | > pyt hon
>>> fromdistutils.sysconfig inport get_python_lib

>>> print get_python_lib() # Python v2.x
/ Li brary/ Pyt hon/ 2. 7/ si t e- packages
>>> print(get_python_lib()) # Python v3.x

/ Li brary/ Framewor ks/ Pyt hon. f r amewor k/ Ver si ons/ 3. 1/ | i b/ pyt hon3. 1/ si t e- packages

http://python.org/download/
http://www.openssl.org/
http://docs.python.org/install/index.html#install-index
http://docs.python.org/install/index.html#install-index
http://docs.python.org/distutils/
http://dev.mysql.com/downloads/connector/python/
http://docs.python.org/install/index.html#how-installation-works

Installing Connector/Python Source Distribution on Microsoft Windows

Note
The above example shows the default installation location on Mac OS X 10.7.

Installing Connector/Python Source Distribution on Microsoft
Windows

On Microsoft Windows systems, you can download Connector/Python as a zi p archive from http://
dev.mysql.com/downloads/connector/python/.

Make sure that the Python executable is available in the Windows %°ATH%Y0setting. For more information
about installation and configuration of Python on Windows, see the section Using Python on Windows in
the Python documentation.

To install Connector/Python from the . zi p file, download the latest version and follow these steps:

1. Unpack the downloaded zi p archive into a directory of your choice. For example, into the folder C:
\ mysqgl - connect or\ . Use the appropriate unzip command for your system, for example, unzi p,
pkunzi p, and so on.

2. Start a console window (or a DOS window) and change to the folder where you unpacked the
Connector/Python zi p archive.

shel | > c¢d C \nysql - connect or\

3. Once inside the Connector/Python folder, do the following:

shel | > python setup. py instal

On Windows, Connector/Python gets installed in the default location C: \ Pyt honX. Y\ Li b\ si t e-
packages\ where X. Y is the Python version you used to install the connector.

If you are not sure where Connector/Python ended up, do the following to retrieve the location where
packages get installed:

shel | > pyt hon

>>> fromdistutils.sysconfig inport get _python_lib
>>> print get_python_lib() # Python v2.x
>>> print(get_python_lib()) # Python v3.x

Verifying Your Connector/Python Installation

To test that your Connector/Python installation is working and is able to connect to a MySQL database
server, you can run a very simple program where you substitute the login credentials and host information
of the MySQL server. See Connecting to MySQL Using Connector/Python for an example.

http://dev.mysql.com/downloads/connector/python/
http://dev.mysql.com/downloads/connector/python/
http://docs.python.org/using/windows.html

Chapter 4. Connector/Python Coding Examples

Table of Contents

Connecting to MySQL Using ConNector/PYLNONccouuiiiiiiiiii e e e e e e 7
Creating Tables Using ConNECIONPYINONiiii i e e e e e ean s 8
Inserting Data Using ConNECtOr/PYLNONcouuiii e e e e eeanas 10
Querying Data Using ConNecCtor/PYINONccouiiiiiiiii e e e e e e e ees 11

These coding examples illustrate how to develop Python applications and scripts which connect to a
MySQL Server using MySQL Connector/Python.

Connecting to MySQL Using Connector/Python

The connect () constructor is used for creating a connection to the MySQL server and returns a
My SQLConnect i on object.

The following example shows how to connect to the MySQL server:

i mport mnysql . connect or
cnx = mysqgl . connector. connect (user='scott', password='tiger',
host='127. 0. 0. 1"
dat abase=' enpl oyees')
cnx. cl ose()

See Chapter 6, Connector/Python Connection Arguments for all possible connection arguments.

It is also possible to create connection objects using the connection.MySQLConnection() class. Both
methods, using the connect () constructor, or the class directly, are valid and functionally equal, but using
connect or () is preferred and will be used in most examples in this manual.

To handle connection errors, use the t r y statement and catch all errors using the errors.Error exception:

i mport mysql . connect or
from nmysqgl . connector inport errorcode
try:
cnx = mysqgl . connect or. connect (user =' scott"',
dat abase="testt"')
except nysql.connector.Error as err
if err.errno == errorcode. ER_ACCESS_DEN ED_ERROR:
print("Something is wong your usernane or password")
elif err.errno == errorcode. ER BAD DB _ERROR:
print (" Dat abase does not exists")
el se
print(err)
el se
cnx. cl ose()

If you have lots of connection arguments, it's best to keep them in a dictionary and use the * * -operator.
Here is an example:

i mport mysql . connect or
config = {
‘user': 'scott',
' password': 'tiger'
"host': '127.0.0.1'
' dat abase': ' enpl oyees'
‘rai se_on_warni ngs': True

Creating Tables Using Connector/Python

}

cnx = nysql . connector. connect (**confi g)
cnx. cl ose()

Creating Tables Using Connector/Python

All DDL (Data Definition Language) statements are executed using a handle structure known as a cursor.
The following examples show how to create the tables of the enpl oyees database. You will need them for
the other examples.

In a MySQL server, tables are very long-lived objects, and are often accessed by multiple applications
written in different languages. You might typically work with tables that are already set up, rather than
creating them within your own application. Avoid setting up and dropping tables over and over again, as
that is an expensive operation. The exception is temporary tables, which can be created and dropped
quickly within an application.

from__future__ inmport print_function
i mport mysql . connect or
from nmysqgl . connector inport errorcode
DB_NAME = ' enpl oyees
TABLES = {}
TABLES[' enpl oyees'] = (
" CREATE TABLE " enpl oyees™ ("
" “enp_no’ int(11) NOT NULL AUTO_ | NCREMENT, "
“birth_date’ date NOT NULL,"
“first_name’ varchar(14) NOT NULL,'
“last_nane’ varchar (16) NOT NULL, "
“gender’ enun('M,"'F) NOT NULL,"
“hire_date’ date NOT NULL,"
PRI MARY KEY (enp_no')"
") ENG NE=I nnoDB")
TABLES[' departnents'] = (
" CREATE TABLE " departnents” ("
“dept _no" char(4) NOT NULL,"
“dept _nane’ varchar (40) NOT NULL, "
PRI MARY KEY (" dept_no'), UN QUE KEY " dept_nane" (dept_nane’)"
") ENG NE=I nnoDB")
TABLES[' sal aries'] = (
" CREATE TABLE “sal aries™ ("
“enp_no’ int(11) NOT NULL,"
“salary’ int(11) NOT NULL,"
‘fromdate’ date NOT NULL,"
“to_date’ date NOT NULL,"
PRI MARY KEY (enp_no , fromdate'), KEY “enp_no (enp_no’),"
CONSTRAI NT “sal aries_ibfk_1° FOREIGN KEY (“enp_no’) "
REFERENCES " enpl oyees™ (enp_no) ON DELETE CASCADE"
") ENG NE=I nnoDB")
TABLES[' dept _enmp'] = (
" CREATE TABLE “dept _enmp" ("
" “enp_no int(11) NOT NULL,"
“dept _no" char(4) NOT NULL,"
“fromdate’ date NOT NULL,"
“to_date’ date NOT NULL,"
PRI MARY KEY (enp_no , "dept_no'), KEY “enp_no (enp_no),"
KEY “dept_no" (dept_no’),"
CONSTRAI NT " dept _enp_i bf k_1" FOREI GN KEY (" enp_no)
REFERENCES " enpl oyees™ (enp_no) ON DELETE CASCADE, "
CONSTRAI NT " dept _enp_i bf k_2° FOREI GN KEY (dept_no")
REFERENCES " departnents’ (dept_no) ON DELETE CASCADE"
") ENG NE=I nnoDB")
TABLES[' dept _manager'] = (
CREATE TABLE " dept _manager ™ ("
“dept _no" char(4) NOT NULL,"
“enp_no’ int(11) NOT NULL,"

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_ddl
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_temporary_table

Creating Tables Using Connector/Python

‘fromdate’ date NOT NULL,"
“to_date’ date NOT NULL,"
PRI MARY KEY (enp_no , "dept_no’),"
KEY “enp_no" (enp_no’),"
KEY “dept_no" (dept_no’),"
CONSTRAI NT " dept _manager _i bf k_1" FORElI GN KEY (enp_no)
REFERENCES " enpl oyees™ (enp_no) ON DELETE CASCADE, "
CONSTRAI NT " dept _manager _i bf k_2° FORElI GN KEY (dept_no")
REFERENCES " departnents’ (dept_no) ON DELETE CASCADE"
") ENG NE=I nnoDB")
TABLES['titles'] = (
" CREATE TABLE “titles ("
“enp_no’ int(11) NOT NULL,"
“title varchar(50) NOT NULL,"
“fromdate’ date NOT NULL,"
‘to_date’ date DEFAULT NULL, "
PRI MARY KEY (“enp_no , ‘title , fromdate'), KEY "enp_no (enp_no),"
CONSTRAINT “titles ibfk 1° FOREI GN KEY (enp_no’)"
REFERENCES " enpl oyees™ (enp_no) ON DELETE CASCADE"
") ENG NE=I nnoDB")

The above code shows how we are storing the CREATE statements in a Python dictionary called TABLES.
We also define the database in a global variable called DB_NANE, which allows you to easily use a different
schema.

cnx = mysql . connect or. connect (user="'scott")
cursor = cnx.cursor()

A single MySQL server can contain multiple databases. Typically, you specify the database to switch to
when connecting to the MySQL server. This example does not connect to the database upon connection,
so that it can make sure the database exists, and create it if not.

def create_database(cursor):
try:
cur sor. execut e(
" CREATE DATABASE {} DEFAULT CHARACTER SET 'utf8'".format (DB_NAMNE))
except nysql.connector.Error as err:
print("Failed creating database: {}".format(err))
exit(1)
try:
cnx. dat abase = DB_NAME
except nysql.connector.Error as err:
if err.errno == errorcode. ER_ BAD DB _ERROR:
creat e_dat abase(cursor)
cnx. dat abase = DB_NAME
el se:
print(err)
exit(1)

We first try to change to a particular database using the dat abase property of the connection object cnx.
If there is an error, we examine the error number to check if the database does not exist. If so, we call the
creat e_dat abase function to create it for us.

On any other error, the application exits and displays the error message.

for nane, ddl in TABLES.iteritens():
try:
print("Creating table {}: ".format(nane), end="")
cursor. execut e(ddl)
except nysql.connector.Error as err:
if err.errno == errorcode. ER_ TABLE _EXI STS_ERROR:
print("already exists.")
el se:
print(err.errmnsg)
el se:

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_database

Inserting Data Using Connector/Python

print("OK")
cursor. cl ose()
cnx. cl ose()

After we succesfully created or changed to the target database, we create the tables by iterating over the
items of the TABLES dictionary.

We handle the error when the table already exists by simply notifying the user that it was already there.
Other errors are printed, but we simply continue creating tables. (We show how to handle the “table
already exists” condition for illustration purposes. In a real application, we would typically avoid the error
condition entirely by using the | F NOT EXI STS clause of the CREATE TABLE statement.)

The output would be something like this:

Creating table enpl oyees: already exists
Creating table salaries: already exists
Creating table titles: K

Creating table departnments: already exists
Creating tabl e dept_nanager: already exists
Creating tabl e dept_enp: already exists

To populate the employees tables, use the dump files of the Employee Sample Database. Note that
you only need the data dump files that you will find in an archive named like enpl oyees_db- dunp-
files-1.0.5.tar.bz2. After downloading the dump files, do the following from the command line,
adding connection options to the nysql commands if necessary:

shel | > tar xzf enpl oyees_db-dunp-files-1.0.5.tar.bz2
shel | > cd enpl oyees_db

shel | > nysqgl enpl oyees < | oad_enpl oyees. dunp

shel | > nmysqgl enpl oyees < load_titles. dunp

shel | > nmysqgl enpl oyees < | oad_depart nents. dunp
shel | > nysqgl enpl oyees < | oad_sal ari es. dunp

shel | > nysqgl enpl oyees < | oad_dept _enp. dunp

shel | > nysql enpl oyees < | oad_dept _nanager . dunp

Inserting Data Using Connector/Python

Inserting or updating data is also done using the handler structure known as a cursor. When you use a
transactional storage engine such as | nnoDB (which is the default in MySQL 5.5 and later), you must
commit the data after a sequence of | NSERT, DELETE, and UPDATE statements.

In this example we show how to insert new data. The second | NSERT depends on the value of the newly
created primary key of the first. We are also demonstrating how to use extended formats. The task is to
add a new employee starting to work tomorrow with a salary set to 50000.

Note

The following example uses tables created in the example Creating Tables Using
Connector/Python. The AUTO_| NCREMENT column option for the primary key of the
enpl oyees table is important to ensure reliable, easily searchable data.

from__future__ inport print_function

fromdatetine inport date, datetine, tinedelta

i mport nysql . connect or

cnx = mysql . connect or. connect (user='scott', database='enpl oyees')

cursor = cnx.cursor()

tonorrow = datetime.now).date() + timedelta(days=1)

add_enpl oyee = ("I NSERT | NTO enpl oyees "
"(first_name, |ast_nane, hire_date, gender, birth_date) "
"VALUES (%, %, %, %, %)")

add_salary = ("INSERT I NTO sal aries "

10

http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/employee/en/index.html
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_commit
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_primary_key

Querying Data Using Connector/Python

"(enp_no, salary, fromdate, to_date)
"VALUES (% enp_no)s, %salary)s, %fromdate)s, %to_date)s)")
dat a_enpl oyee = (' Ceert', 'Vanderkelen', tonorrow, 'M, date(1977, 6, 14))
I nsert new enpl oyee
cur sor. execut e(add_enpl oyee, data_enpl oyee)
enp_no = cursor.lastrowd
Insert salary information
data_salary = {
'enp_no' : enp_no
"salary': 50000
‘fromdate': tonorrow,
'to_date': date(9999, 1, 1)
}
cursor. execute(add_sal ary, data_sal ary)
Make sure data is committed to the database
chnx. commt ()
cursor. cl ose()
cnx. cl ose()

We first open a connection to the MySQL server and store the connection object in the variable cnx. We
then create a new cursor, by default a MySQLCursor object, using the connection's cur sor () method.

We could calculate tomorrow by calling a database function, but for clarity we do it in Python using the
dat et i ne module.

Both | NSERT statements are stored in the variables called add _enpl oyee and add_sal ar y. Note that
the second | NSERT statement uses extended Python format codes.

The information of the new employee is stored in the tuple dat a_enpl oyee. The query to insert the
new employee is executed and we retrieve the newly inserted value for the column enp_no using the
| astrow d property of the cursor object.

Next, we insert the new salary for the new employee. We are using the enp_no variable in the directory
holding the data. This directory is passed to the execut e() method of the cursor object.

Since by default Connector/Python turns autocommit off, and MySQL 5.5 and later uses transactional
| nnoDB tables by default, it is necessary to commit your changes using the connection's conmi t ()
method. You could also roll back using the r ol | back() method.

Querying Data Using Connector/Python

The following example shows how to query data using a cursor created using the connection's cur sor ()
method. The data returned is formatted and printed on the console.

The task is to select all employees hired in the year 1999 and print their names with their hire date to the
console.

i mport datetinme
i nport nysqgl . connect or
cnx = nysql.connector. connect (user="'scott', database='enpl oyees')
cursor = cnx.cursor()
query = ("SELECT first_nane, |ast_nane, hire_date FROM enpl oyees "
"WHERE hire_date BETWEEN % AND %")
hire_start = datetine.date(1999, 1, 1)
hire_end = datetine. date(1999, 12, 31)
cursor. execute(query, (hire_start, hire_end))
for (first_nane, |ast_nane, hire_date) in cursor
print("{}, {} was hired on {:% % %}".fornmat(
| ast _nanme, first_nanme, hire_date))
cursor. cl ose()
cnx. cl ose()

11

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_autocommit
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_rollback
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_query

Querying Data Using Connector/Python

We first open a connection to the MySQL server and store the connection object in the variable cnx. We
then create a new cursor, by default a MySQLCursor object, using the connection's cur sor () method.

In the preceding example, we store the SELECT statement in the variable quer y. Note that we are using
unquoted %s-markers where dates should have been. Connector/Python converts hi re_start and

hi re_end from Python types to a data type that MySQL understands and adds the required quotes. In this
case, it replaces the first % with ' 1999- 01- 01' , and the second with ' 1999- 12- 31" .

We then execute the operation stored in the quer y variable using the execut e() method. The data used
to replace the %s-markers in the query is passed as a tuple: (hire_start, hire_end).

After executing the query, the MySQL server is ready to send the data. The result set could be zero rows,
one row, or 100 million rows. Depending on the expected volume, you can use different techniques to
process this result set. In this example, we use the cur sor object as an iterator. The first column in the
row will be stored in the variable fi r st _nane, the second in | ast _nane, and the third in hi re_dat e.

We print the result, formatting the output using Python's built-in f or mat () function. Note that hi re_dat e
was converted automatically by Connector/Python to a Python dat et i ne. dat e object. This means that
we can easily format the date in a more human-readable form.

The output should be something like this:

Wlharm LiMn was hired on 16 Dec 1999

W el onsky, Lalit was hired on 16 Dec 1999
Kambl e, Dannz was hired on 18 Dec 1999
DuBour di eux, Zhongwei was hired on 19 Dec 1999
Fuji sawa, Rosita was hired on 20 Dec 1999

12

Chapter 5. Connector/Python Tutorials

Table of Contents

Tutorial: Raise employee's salary using a buffering CUrsSOroooiii i 13

These tutorials illustrate how to develop Python applications and scripts that connect to a MySQL database
server using MySQL Connector/Python.

Tutorial: Raise employee's salary using a buffering cursor

The following example script will give a long-overdue raise effective tomorrow to all employees who joined
in the year 2000 and are still with the company.

We are using buffered cursors to iterate through the selected employees. This way we do not have to fetch
the rows in a new variables, but can instead use the cursor as an iterator.

Note that the script is an example; there are other ways of doing this simple task.

from__future__ inmport print_function
from deci mal inport Deci mal
fromdatetime inport datetine, date, tinedelta
i mport nysql . connect or
Connect with the MySQL Server
cnx = mysql . connect or. connect (user="'scott', database='enpl oyees')
Cet two buffered cursors
cur A = cnx. cursor (buf f ered=Tr ue)
cur B = cnx. cursor (buf f er ed=Tr ue)
Query to get enployees who joined in a period defined by two dates
query = (
"SELECT s.enp_no, salary, fromdate, to_date FROM enpl oyees AS e "
"LEFT JO N sal aries AS s USING (enp_no)
"WHERE t o_date = DATE(' 9999-01-01')"
"AND e. hire_date BETWEEN DATE(%) AND DATE(%)")
UPDATE and | NSERT statenents for the old and new sal ary
update_ol d_salary = (
"UPDATE sal ari es SET to_date = % "
"WHERE enp_no = % AND fromdate = 9%")
insert_new salary = (
"I NSERT | NTO sal aries (enp_no, fromdate, to_date, salary)
"VALUES (%, %, %, %)")
Sel ect the enpl oyes getting a raise
cur A. execut e(query, (date(2000, 1, 1), date(2001, 1, 1)))
lterate through the result of curA
for (enp_no, salary, fromdate, to_date) in curA
Update the old and insert the new sal ary
new_salary = int(round(salary * Decinal ('1.15")))
cur B. execut e(update_ol d_sal ary, (tonorrow, enp_no, fromdate))
cur B. execut e(i nsert_new_sal ary,
(enmp_no, tonorrow, date(9999, 1, 1,), new salary))
Commit the changes
chnx. commit ()
chx. cl ose()

13

14

Chapter 6. Connector/Python Connection Arguments

The following lists the arguments which can be used to initiate a connection with the MySQL server using

either:

* Function nysqgl . connect or. connect ()

* Class nysql . connect or. MySQLConnect i on()

Argument Name Default |Description

user (user nane¥) The username used to authenticate with the MySQL
Server.

passwor d (passwd*) The password to authenticate the user with the MySQL
Server.

dat abase (db*) Database name to use when connecting with the MySQL
Server.

host 127.0.0.1 [Hostname or IP address of the MySQL Server.

port 3306 TCP/IP port of the MySQL Server. Must be an integer.

uni x_socket The location of the Unix socket file.

use_uni code True Whether to use Unicode or not.

char set utf8 Which MySQL character set to use.

collation utf8_generw/hoch MySQL collation to use.

aut ocommi t False Whether to autocommit transactions.

time_zone Setthe t i me_zone session variable at connection.

sql _node Set the sgl _node session variable at connection.

get _war ni ngs False Whether to fetch warnings.

rai se_on_war ni ngs False Whether to raise an exception on warnings.

connection_ti meout Timeout for the TCP and Unix socket connections.

(connect _ti nmeout *)

client_flags MySQL client flags.

buf f ered False Whether cursor object fetches the result immediately after
executing query.

raw False Whether MySQL results are returned as-is, rather than
converted to Python types.

ssl _ca File containing the SSL certificate authority.

ssl _cert File containing the SSL certificate file.

ssl _key File containing the SSL key.

dsn Not supported (raises Not Support edErr or when

used).

* Synonymous argument name, available only for compatibility with other Python MySQL drivers. Oracle
recommends not to use these alternative names.

Authentication with MySQL will use user nane and passwor d. Note that MySQL Connector/Python does
not support the old, insecure password protocols of MySQL versions prior to 4.1.

15

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_autocommit

When the dat abase parameter is given, the current database is set to the given value. To later change
the database, execute the MySQL USE command or set the dat abase property of the My SQLConnect i on
instance.

By default, Connector/Python tries to connect to a MySQL server running on | ocal host using TCP/IP.
The host argument defaults to IP address 127.0.0.1 and port to 3306. Unix sockets are supported by
setting uni x_socket . Named pipes on the Windows platform are not supported.

Strings coming from MySQL are by default returned as Python Unicode literals. To change this behavior,
setuse_uni code to Fal se. You can change the character setting for the client connection through the
char set argument. To change the character set after connecting to MySQL, set the char set property
of the MySQ.Connect i on instance. This technique is preferred over using the MySQL SET NAMES
statement directly. Similar to the char set property, you can set the col | at i on for the current MySQL
session.

Transactions are not automatically committed; call the conmi t () method of the MySQLConnect i on
instance within your application after doing a set of related insert, update, and delete operations. For data
consistency and high throughput for write operations, it is best to leave the aut oconmi t configuration
option turned off when using | nnoDB or other transactional tables.

The time zone can be set per connection using the t i me_zone argument. This is useful if the MySQL
server is set, for example, to UTC and TI MESTAMP values should be returned by MySQL converted to the
PST time zone.

MySQL supports so called SQL Modes. which will change the behavior of the server globally or per
connection. For example, to have warnings raised as errors, set sql _node to TRADI TI ONAL. For more
information, see Server SQL Modes.

Warnings generated by queries are fetched automatically when get _war ni ngs is set to Tr ue. You can
also immediately raise an exception by setting r ai se_on_war ni ngs to Tr ue. Consider using the MySQL
sgl_mode setting for turning warnings into errors.

To set a timeout value for connections, use connecti on_ti meout .

MySQL uses client flags to enable or disable features. Using the cl i ent _f | ags argument, you have
control of what is set. To find out what flags are available, use the following:

from nysql . connector. constants inport CientFlag
print "\n'.join(CientFlag.get_full_info())

If cl i ent _fl ags is not specified (that is, it is zero), defaults are used for MySQL v4.1 and later. If you
specify an integer greater than 0, make sure all flags are set. A better way to set and unset flags is to use a
list. For example, to set FOUND _ROWS, but disable the default LONG _FLAG

flags = [dientFl ag. FOUND_ROA5, -dientFl ag. LONG FLAG
nysqgl . connect or. connect (client_fl ags=fl ags)

By default, MySQL Connector/Python does not buffer or pre-fetch results. This means that after a query

is executed, your program is responsible of fetching the data. This avoids using excessive memory when
queries return large result sets. If you know that the result set is small enough to handle all at once,
fetching the results immediately by setting buf f er ed to Tr ue. It is also possible to set this per cursor (see
cursor manual).

MySQL types will be converted automatically to Python types. For example, a DATETI ME column becomes
a datetime.datetime object. When conversion should be done differently, for example to get better
performance, set r awto Tr ue.

16

http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html
http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-real-connect.html
http://docs.python.org/library/datetime.html#datetime.datetime

Using SSL connections is possible when your Python installation supports SSL, that is, when it is compiled
against the OpenSSL libraries. When you provide the arguments ssl _ca, ssl _key and ssl _cert, the
connection switches to SSL. You can use this in combination with the conpr essed argument set to Tr ue.

passwd, db and connect ti meout are valid for compatibility with other MySQL interfaces and are
respectively the same as passwor d, dat abase and connecti on_ti neout . The latter take precedence.
Data source name syntax or dsn is not used; if specified, it raises a Not Suppor t edEr r or exception.

17

http://docs.python.org/library/ssl.html

18

Table of Contents

Chapter 7. Connector/Python API Reference

L o] (ST a T o7 =T o 1] 1 21
1 ToTe (U1 T= =Y o o] oo Yo L= PSP 22
oY o1 1o T =T N oY = =l o | PPN 22
L ol=T o1 o] T =T A oY G Y o | o o PPN 23
EXCEption €rrors. | Nt er f @CEEN I OF uuiiiii e e e e 23
EXCeption €r r 0rS. Dat @DaSEET I OF iiuuiiiii i e e e e e e e eaaeees 23
| el=T o1 o I o T o B oL = o = L = o P 23
Exception errors. Qoer at i ONal BN I OF oot e e e e e e 23
EXception errors. Programml NOEN I OF .o e e e e e e e e et e e e e e aa e e aanees 24
EXCEPLioN €rrorS. | NE @I T LY BN I OF 1ot e e e e e e 24
EXCEPLION €5 I OF S. DAl @EN I OF 1uniiiiiiiii e e e e e e e e e e e et e e e e e 24
Exception errors. NOt SUPPOTrt @AEN I OF euiiiiiii e e e e 24
Function errors. custom error _exception(error=None, exception=None) 24

Class connect i on. MySQLCONNECT T ON cuuuiiiiiiiiiiie e e e e e e e e e e e e e e e e et e e ean e eanaas 25
Constructor connecti on. MySQLCONNECt i ON(* *KWAI OS) tevreeriiiiiiiiiii e eieeeeeeeeaee e eaees 25
Method MySQLCONNECT I ON. Cl OSE() iiiriiiiii et e e e e e e e eeees 25
Method MySQLConnect i on. CONfi g(**KWATI OS) tevuuiieuieiiiiieii e eiie e e e e e e e e e et e e e eaaeees 25
Method MySQLConnect i on. CONNECE (* *KWAK §S) wevuiiiiiiiiiiieiiiieei e e e e e e e e e e e 25
Method MySQLCONNECT I ON. COMMI T () tirreeiiei it e e e e e e e e e e e e e e e et e e e eaaeeees 25
Method MySQLConnect i on. cur sor (buf f ered=None, raw=None,

Lo 0T Yo] o = =T AN o 0 =) TP 26
Method MySQLConnect i on. cnd_change_user (usernane=""', password="",

dat @abase="", Char SET =33) ittt e e 26
Method MySQLConnect i on. T _debuUg() ouieiiiiiii e e e 26
Method MySQL.Connection.cnd_init_db(database)ccccoooiiiiiiiiiiiiiii e, 26
Method MySQLConnect i 0N. CNT_Pi NG() eerrnieiiiiie e e e e e e et e e e e aaeees 26
Method MySQLConnecti on. cnd_process i NFO() .oviiiiiiiiiii e e 27
Method MySQ.Connection. cnd_process_Kill (nmysql _pid) coooriiiiiiiiiiiiieeneee e, 27
Method MySQLCONNECT i ON. CIT_QUI T () eerrrieiiiee e e e e e e e e e e e e eaaeees 27
Method MySQLConnection. cnd_query(stat @MBNT) ..oiiiiiiiiii i 27
Method MySQ_.Connection.cnd_query_iter(statement) ..cccooviiiiiiiiiiiin e, 27
Method MySQLConnection. cnd_refresh(0pti ONS) .oiiiiiiiiii i e 28
Method MySQLConnecti on. cnd_Shut dOWN() ovuiiiiiii e 28
Method MySQLConnecti on. e _Stat i STT CS() tiruiiiiiiiiiii i e e 28
Method MySQLConnect i 0N. di SCONMNECT () wuviiiinieiiiieiiie e e e e e et e et e e e e eanaees 28
Method MySQLConnecti on. get _rows(Count =NONE) ...ocviviiiiiiiiiiiieiiie e e e e e e e 28
Method MySQLCONNECT I ON. GET T OW() wruieiinieiiiieeii e et e et e e et e e e e e et e e et e e e e s e e e et e eetnaeeanaees 28
Method MySQLConnecti on. get _server 1 Nfo() i 29
Method MySQLConnecti on. get _Server _Ver Si ON() coviiiiiieiiieiiii e eeineeene e e e eaneeeans 29
Method MySQLConnecti 0n. i S _CONNECE BU() tirririiiiiiiiiieii e e e e e e e e 29
Method MySQ_.Connection.isset _client_flag(flag) .cccoooriiiiiiiiiniiic e, 29
Method MySQ_.Connection. ping(attenpts=1, delay=0)cccccooriiiiiiiiiiiiiieiiieerin e, 29
Method MySQ.Connecti on. reconnect (attenpts=1, delay=0)ccocoeviiririiiiriiiieiiinnnnnnens 29
Method MySQLConnect i on. 1ol 1 BACK() .oeiuiiii e e 30
Method MySQLConnect i on. set _charset _col | ati on(char set =None,

Lo oY I = LA T 0] o = 30
Method MySQ.Connection.set_client flags(flags) .ccoooviiiiiiiiiiiiiiiiin e, 30

19

Property MySQLCoONNECT i ON. AUt OCOMYT T 1ouuiitiiii i e e e e e e e e e e e e e et e enaeenas 30

Property MySQLCoNNECt i ON. Char SEt _NAITEiiiiii i e e eans 31
Property MySQLConnect i on. cOl | at i ON_NAIME ...iiiiiiiiie e 31
Property MySQLConnect i ON. CONNECT T ON_i G .ovvniiiiiiiiei e e e e e e 31
Property MySQLCoNNeCt i ON. dat @haS@ ...cvuuiiiiiiiiii e 31
Property MySQLCoONNECT i ON. gL WA NI NUS tevuiitiiiiiineiieeeeee e re e e e e e e et e et e e e e e eeeneenns 31
Property MySQLConnect i ON. rai S€_0N_WAI Ni NS ..ivuuiiiiiiieeiee e et e e e eeeeneene e e e raeeeeees 32
Property MySQLCoNNECt i ON. SErVer _NOST .iiuiiiii e 32
Property MySQLCONNECT I ON. SEI VEI PO T iiuieiiiiei et e e e e e e e e e e e et e eaeenns 32
Property MySQLCoNNeCt i ON. SOl _MDUE ouiiiiiiii i e e e e e e 32
Property MySQLCONNECT I ON. 11 IMTB_ZONE .iiuiiiieieee et e e e et e e e e e e e e e e et e et e et e aneeanns 33
Property MySQLCONNECT I ON. UNT X_SOCKET iiiuiiiiiii i e e e e e aeeans 33
Property My SQLCONNECT | ON. USEI wuuiiiiiiieie ettt e et et e e e e et e e e et e et e e e e e e eaeea e enaeanaeanaaannes 33
ClasS CUT SOT . MY SQL CUI SOT 1uiiiiiieiiu ettt e ettt e eet e e et e e st eeat e eat e eata s e eanaeetn e eanaeanaeatnreranaaetnsarannersneenen 33
CONSIIUCIOr CUT SOF . MY SO UL SOOI ittt ittt et et e e e e e e e e et et e et e et e et e eaeenaaaneeanaaaeennnes 33
Method MySQLCur sor. cal | proc(procname, argS=()) teeeecerererirerrieeeiiieraiieerneeriirerseaeennns 33
Method My SQLCUN SO . Cl OSE(1) wrureetnieiii et et e et e e e e e e e e e e e e et e e et e e e e e aaeeaens 34
Method MySQLCur sor . execut e(operati on, parans=None, nulti=False)ccceeceennn. 34
Method MySQLCur sor . execut emany(operati on, SeQq_Par anB) ..ccccceeverreeereniereinrernieeninnans 34

Method MySQLCur sor .
Method MySQLCur sor .
Method MySQLCur sor .

FRUECNAL T () orreiii e e 35
FetChmMBNY (ST ZEZ1) i e 35
T L CNONE() i 35

Method MySQLCUr sor . f et ChWAr NI NOS() cevriiiiiiei e e e e e e e 36
Method MySQLCUr sor. St Ored _reSUl T S(() wiviiiiiiiiii e e e e 36
Property MySQLCUI SO . COl UMM_NAIMES .uiiiiiiiitieitie e e ee e e e e e e e s e e e e e e et e e e en e aneeanaeanns 36
Property MySQLCUI SOF . ST Al BITBINT iuiiiiiiii e e e e e en 37
Property MySQLCUE SOF . Wi T N T OWS iuiiiiiii e e e e e e e e e e e e e e e aaaeanes 37
Class cur sor. MySQLCUN SOF BUf f 5 B0 ..uuiiiiiiiiiiii e e e e e e e e ean s 37
Class conSt ant S. Gl i N F] @0 couuiiiiiiiiii e e e e e e e e e e et e e st e e et e e et eeaneees 37
Class CONSt ANt S. Fi @l ATy PO tiiiiiiiiiiiiii e e e e e e e e e e e e et e e et e e et e e et e e et e eanaees 38
Class CONSt ANt S. SOLIMDIUE .uiiiiiiiii i et e e ettt e e et et e et e et e et e st e s e b eteererens 38
Class cONST ANt S. Char QCTE 5 SEE ciivuiiiiiiiii it e e e et e e e e e e e eba s 38
Class const ant s. Ref r@ShOPT i ON ..uuiiiiiiii e e e e e e e eaaaees 38

This section contains the public API reference of Connector/Python. Although valid for both Python 2 and
Python 3, examples should be considered working for Python 2.7, and Python 3.1 and greater.

The following overview shows the nysql . connect or package with its modules. Currently, only the most
useful modules, classes and functions for end users are documented.

nmysql . connect or

errorcode
errors
connecti on
const ant s
conver si on
cur sor
dbapi
| ocal es

eng

client_error

pr ot oco
utils

20

Errors and Exceptions

Errors and Exceptions

The nysqgl . connect or. err or s module defines exception classes for errors and warnings raised
by MySQL Connector/Python. Most classes defined in this module are available when you import

mysql . connect or.

The exception classes defined in this module follow mostly the Python Database Specification v2.0
(PEP-249). For some MySQL client or server errors it is not always clear which exception to raise. It is
good to discuss whether an error should be reclassified by opening a bug report.

MySQL Server errors are mapped with Python exception based on their SQLState (see Server Error
Codes and Messages). The following list shows the SQLSt at e classes and the exception Connector/
Python will raise. It is, however, possible to redefine which exception is raised for each server error. Note

that the default exception is Dat abaseErr or .

02:
07:
08:
OA:
21:
22:
23:
24:
25:
26:
27:
28:
2A:
2B:
2C
20
2E:
33:
34:
35:
37:
3C:

3D:

DataError
DatabaseError
OperationalError
NotSupportedError
DataError
DataError
IntegrityError
ProgrammingError
ProgrammingError
ProgrammingError
ProgrammingError
ProgrammingError
ProgrammingError
DatabaseError
ProgrammingError
DatabaseError
DatabaseError
DatabaseError
ProgrammingError
ProgrammingError
ProgrammingError
ProgrammingError

ProgrammingError

21

http://dev.mysql.com/doc/refman/5.5/en/error-messages-server.html
http://dev.mysql.com/doc/refman/5.5/en/error-messages-server.html

Module er r or code

e 3F: ProgrammingError
* 40: InternalError

e 42: ProgrammingError
» 44: InternalError

e HZ: OperationalError
» XA: IntegrityError

» OK: OperationalError

» HY: DatabaseError

Module err or code

This module contains both MySQL server and client error codes defined as module attributes with the error
number as value. Using error codes instead of error numbers could make reading the source code a bit
easier.

>>> from nmysql . connector inport errorcode
>>> errorcode. ER BAD TABLE ERROR
1051

See Server Error Codes and Messages and Client Error Codes and Messages.
Exception errors. Error

This exception is the base class for all other exceptions in the er r or s module. It can be used to catch all
errors in a single except statement.

The following example shows how we could catch syntax errors:

i mport mnysql . connect or

try:
cnx = mysql . connector. connect (user="scott', database='enpl oyees')
cursor = cnx.cursor()
cursor. execut e(" SELECT * FORM enpl oyees") # Syntax error in query
cnx. cl ose()

except nysql.connector.Error as err:
print("Something went wong: {}".fornat(err))

Initializing the exception supports a few optional arguments, namely nsg, er r no, val ues and sql st at e.
All of them are optional and default to None. er r or s. Err or isinternally used by Connector/Python to
raise MySQL client and server errors and should not be used by your application to raise exceptions.

The following examples show the result when using no or a combination of the arguments:

>>> from nysql . connector.errors inmport Error

>>> str(Error())

" Unknown error’

>>> str(Error (" Oops! There was an error."))

' Qops! There was an error.'

>>> str(Error(errno=2006))

' 2006: MySQL server has gone away'

>>> str(Error(errno=2002, val ues=('/tnp/nmysqgl.sock', 2)))

"2002: Can't connect to |local MySQL server through socket '/tnp/nysql.sock' (2)"
>>> str(Error(errno=1146, sql state='42S02', nsg="Table 'test.spam doesn't exist"))

22

http://dev.mysql.com/doc/refman/5.5/en/error-messages-server.html
http://dev.mysql.com/doc/refman/5.5/en/error-messages-client.html

Exception er r or s. V\r ni ng

"1146 (42S02): Table 'test.spaml doesn't exist”

The example which uses error number 1146 is used when Connector/Python receives an error packet from
the MySQL Server. The information is parsed and passed to the Er r or exception as shown.

Each exception subclassing from Er r or can be initialized using the above mentioned arguments.
Additionally, each instance has the attributes er r no, nsg and sql st at e which can be used in your code.

The following example shows how to handle errors when dropping a table which does not exists (when you
do not want to use the | F EXI STS clause):

i nport nysqgl . connect or
from nysql . connector inport errorcode
cnx = nysql.connector.connect (user="scott', database='test')
try:
cur. execut e(" DROP TABLE spani')
except nysgl.connector.Error as err:
if err.errno == errorcode. ER BAD TABLE ERROR:
print("Creating table spant')
el se:
raise

errors. Error is asubclass of the Python St andar dEr r or .

Exception errors. V\r ni ng

This exception is used for reporting important warnings, however, Connector/Python does not use it. It is
included to be compliant with the Python Database Specification v2.0 (PEP-249).

Consider using either more strict Server SQL Modes or the raise_on_warnings connection argument to
make Connector/Python raise errors when your queries produce warnings.

errors. War ni ng is a subclass of the Python St andar dEr r or .
Exception errors. I nterfaceError

This exception is raised for errors originating from Connector/Python itself, not related to the MySQL
server.

errors.InterfaceError isasubclassoferrors. Error.

Exception err ors. Dat abaseErr or
This exception is the default for any MySQL error which does not fit the other exceptions.
errors. Dat abaseError isasubclass oferrors. Error.

Exception errors. I nternal Error

This exception is raised when the MySQL server encounters an internal error, for example, when a
deadlock occurred.

errors. I nternal Error isasubclass of errors. Dat abaseError.
Exception errors. Operational Error
This exception is raised for errors which are related to MySQL's operations. For example, to many

connections, a hostname could not be resolved, bad handshake, server is shutting down, communication
errors, and so on.

23

http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html

Exception er r or s. Progr amm ngEr r or

errors. Operational Error is asubclass of errors. Dat abaseErr or.

Exception errors. Programm ngError

This exception is raised on programming errors, for example when you have a syntax error in your SQL or
a table was not found.

The following example shows how to handle syntax errors:

try:
cursor. execut e("CREATE DESK t1 (id int, PRI MARY KEY (id))")
except nysql.connector. Progranmi ngError as err:
if err.errno == errorcode. ER_ SYNTAX ERROR:
print ("Check your syntax!")
el se:
print(“"Error: {}".format(err))

errors. Progranmm ngError is asubclass of errors. Dat abaseError.

Exception errors. IntegrityError

This exception is raised when the relational integrity of the data is affected. For example, a duplicate key
was inserted or a foreign key constraint would fail.

The following example shows a duplicate key error raised as IntegrityError:
cursor. execut e("CREATE TABLE t1 (id int, PRIMARY KEY (id))")
try:
cursor.execute("INSERT INTOt1 (id) VALUES (1)")
cursor.execute("INSERT INTOt1 (id) VALUES (1)")

except nysql.connector.IntegrityError as err:
print("Error: {}".format(err))

errors.IntegrityError isasubclass of errors. Dat abaseError.

Exception errors. Dat akErr or

This exception is raised when there were problems with the data. Examples are a column set to NULL
when it can not, out of range values for a column, division by zero, column count does not match value
count, and so on.

errors. Dat aError is a subclass of err or s. Dat abaseError.

Exception err ors. Not Support edErr or

This exception is raised is case some feature was used but not supported by the version of MySQL which
returned the error. It is also raised when using functions or statements which are not supported by stored
routines.

errors. Not Support edError is asubclass of errors. Dat abaseError.
Function errors. custom error _exception(error=None,
excepti on=None)
This function defines custom exceptions for MySQL server errors and returns current customizations.

If error is a MySQL Server error number, then you have to pass also the excepti on class. The err or
argument can also be a dictionary in which case the key is the server error number, and value the class of
the exception to be raised.

24

Class connect i on. M\ySQ.Connect i on

To reset the customizations, simply supply an empty dictionary.

i mport nysqgl . connect or
from nysql . connector inport errorcode
Server error 1028 should rai se a Dat abaseError
nysql . connect or. cust om error_excepti on(1028, nysql.connector. Dat abaseError)
O using a dictionary:
nysql . connect or. cust om error_exception({
1028: nysql . connect or . Dat abaseErr or
1029: nysql . connect or. Oper ati onal Error

1)

To reset, pass an enpty dictionary:
nysql . connect or. cust om error_exception({})

Class connecti on. MySQLConnect i on

The MySQLConnection class is used to open and manage a connection to a MySQL server. It also used to
send commands and SQL queries and read result.

Constructor connecti on. MySQLConnect i on(**kwar gs)

The MySQLConnection constructor initializes the attributes and when at least one argument is passed, it
tries to connect with the MySQL server.

For a complete list or arguments, see Chapter 6, Connector/Python Connection Arguments.

Method MySQLConnect i on. cl ose()

See disconnect().

Returns a tuple.

Method MySQLConnect i on. confi g(**kwar gs)

Allows to configure a MySQLConnection instance after it was instantiated. See Chapter 6, Connector/
Python Connection Arguments for a complete list of possible arguments.

You could use the conf i g() method to change, for example, the username and call r econnect () .

cnx = MySQLConnection(user="'joe', database="test')
Connected as 'joe

cnx. config(user='jane')

chx. reconnect ()

Now connected as 'jane

Method MySQLConnect i on. connect (**kwar gs)

This method sets up the connection to the MySQL server. If no arguments are given, it uses the already
configured or default values. See Chapter 6, Connector/Python Connection Arguments for a complete list
of possible arguments.

Method MySQLConnecti on. conmm t ()

This method sends the COMM T command to the MySQL server, committing the current transaction.
Since by default, Connector/Python does not auto commit, it is important to call this method after every
transaction which updates data for tables using transactional storage engines.

See the rollback() method for rolling back transactions.

25

Method MySQLConnect i on. cur sor (buf f er ed=None, raw=None, cursor_cl ass=None)

>>> cursor. execut e(" | NSERT | NTO enpl oyees (first_nanme) VALUES (%)", ('Jane'))
>>> cnx. commit ()

Method MySQLConnect i on. cur sor (buf f er ed=None, raw=None,
cursor _cl ass=None)

This method returns a MySQLCursor() object, or a subclass of it depending the passed arguments.

When buf f er ed is True, the cursor will fetch all rows after the operation is executed. This is useful when
gueries return small result sets. Setting r aw will skip the conversion from MySQL data types to Python
types when fetching rows. Raw is usually used when you want to have more performance and/or you want
to do the conversion yourself.

The cur sor _cl ass argument can be used to pass a class to use for instantiating a new cursor. It has to
be a subclass of cur sor . Cur sor Base.

The returned object depends on the combination of the buf f er ed and r aw arguments.
« If not buffered and not raw: cur sor . My SQLCur sor

« If buffered and not raw: cur sor . MySQLCur sor Buf f er ed

* If buffered and raw: cur sor . MySQLCur sor Buf f er edRaw

« If not buffered and raw: cur sor . MySQLCur sor Raw

Returns a Cur sor Base instance.

Method MySQLConnect i on. cnd_change_user (user nanme="",
password=""', database='', charset=33)

Changes the user using user nane and passwor d. It also causes the specified dat abase to become the
default (current) database. It is also possible to change the character set using the char set argument.

Returns a dictionary containing the OK packet information.

Method MySQLConnect i on. cnd_debug()

Instructs the server to write some debug information to the log. For this to work, the connected user must
have the SUPER privilege.

Returns a dictionary containing the OK packet information.

Method MySQLConnecti on. cnd_i ni t _db(dat abase)

This method makes specified database the default (current) database. In subsequent queries, this
database is the default for table references that do not include an explicit database specifier.

Returns a dictionary containing the OK packet information.

Method MySQLConnect i on. cnd_pi ng()

Checks whether the connection to the server is working.

26

Method MySQLConnect i on. cnd_process_i nfo()

This method is not to be used directly. Use ping() or is_connected() instead.

Returns a dictionary containing the OK packet information.

Method MySQLConnecti on. cnd_process_info()

This method raises the NotSupportedError exception. Instead, use the SHOW PROCESSLI| ST statement or
query the tables found in the database | NFORMATI ON_SCHENMA.

Method MySQLConnecti on. cnd_process_Kkill (mysqgl _pi d)

Asks the server to kill the thread specified by mysql _pi d. Although still available, it's better to use the
SQL KI LL command.

Returns a dictionary containing the OK packet information.

The following two lines do the same:

>>> cnx. cnd_process_kil |l (123)
>>> cnx. cnd_query(' KILL 123")

Method MySQLConnection.cnd _quit ()

This method sends the QUI T command to the MySQL server, closing the current connection. Since there is
no response from the MySQL, the packet that was sent is returned.

Method MySQLConnecti on. cnd_quer y(st at enent)

This method sends the given st at enent to the MySQL server and returns a result. If you need to send
multiple statements, you have to use the cmd_query_iter() method.

The returned dictionary contains information depending on what kind of query was executed. If the query is
a SELECT statement, the result contains information about columns. Other statements return a dictionary
containing OK or EOF packet information.

Errors received from the MySQL server are raised as exceptions. An | nt er f aceEr r or is raised when
multiple results are found.

Returns a dictionary.

Method MySQLConnecti on.cnd_query_iter(statenent)

Similar to the cmd_query() method, but returns a generator object to iterate through results. Use
cnd_query_iter () when sending multiple statements, and separate the statements with semicolons.

The following example shows how to iterate through the results after sending multiple statements:

statement = ' SELECT 1; INSERT INTO t1 VALUES (); SELECT 2'
for result in cnx.cnd_query(statenent, iterate=True):
if 'colums' in result:
colums = result['col ums']
rows = cnx.get_rows()
el se:
do sonething useful with | NSERT result

Returns a generator object.

27

http://dev.mysql.com/doc/refman/5.5/en/select.html

Method MySQLConnecti on. cnd_refresh(opti ons)

Method MySQLConnecti on.cnd_refresh(options)

This method flushes tables or caches, or resets replication server information. The connected user must
have the RELOAD privilege.

The opt i ons argument should be a bitwise value using constants from the class
constants. RefreshOpti on.

See Class const ant s. Ref reshQpt i on for a list of options.

Example:

>>> from nysql . connector inmport RefreshOption
>>> refresh = RefreshOption. LOG | RefreshOpti on. THREADS
>>> cnx. cnd_refresh(refresh)

Method MySQL.Connect i on. cnd_shut down()

Asks the database server to shut down. The connected user must have the SHUTDOVWN privilege.

Returns a dictionary containing the OK packet information.

Method MySQLConnecti on.cnd_statistics()

Returns a dictionary containing information about the MySQL server including uptime in seconds and the
number of running threads, questions, reloads, and open tables.

Method MySQLConnect i on. di sconnect ()

This method tries to send the QUI T command and close the socket. It does not raise any exceptions.

MySQLConnect i on. cl ose() is a synonymous method name and more commonly used.

Method MySQLConnecti on. get _rows(count =None)

This method retrieves all or remaining rows of a query result set, returning a tuple containing the rows as
sequence and the EOF packet information. The count argument can be used to get a given amount of
rows. If count is not specified or is None, all rows are retrieved.

The tuple returned by get _r ows() consists of:

» A list of tuples containing the row data as byte objects, or an empty list when no rows are available.
» EOF packet information as a dictionary containing st at us_f | ag and war ni ng_count .

An | nterfaceError is raised when all rows have been retrieved.

The get _rows() method is used by MySQLCursor to fetch rows.

Returns a tuple.

Method MySQLConnecti on. get _row()

This method retrieves the next row of a query result set, returning a tuple.

The tuple returned by get _r ow() consists of:

28

Method MySQLConnect i on. get _server i nfo()

e The row as a tuple containing byte objects, or None when no more rows are available.

» EOF packet information as a dictionary containing st at us_f | ag and war ni ng_count , or None when
the row returned is not the last row.

The get _row() method is used by MySQLCursor to fetch rows.

Method MySQLConnecti on. get _server i nfo()

This method returns the MySQL server information verbatim, for example ' 5. 5. 24-1 og' , or None when
not connected.

Returns a string or None.

Method MySQLConnecti on. get _server _version()

This method returns the MySQL server version as a tuple, or None when not connected.

Returns a tuple or None.

Method MySQ.Connecti on.is_connect ed()

Reports whether the connection to MySQL Server is available.

This method checks whether the connection to MySQL is available using the ping() method, but unlike
pi ng(),is_connected() returns Tr ue when the connection is available, Fal se otherwise.

Returns Tr ue or Fal se.

Method MySQLConnection.isset _client _flag(flag)

This method returns Tr ue if the client flag was set, Fal se otherwise.

Returns Tr ue or Fal se.
Method MySQLConnect i on. pi ng(attenpts=1, del ay=0)
Check whether the connection to the MySQL server is still available.

When r econnect is setto Tr ue, one or more attempts are made to try to reconnect to the MySQL server
using the r econnect () method. Use the del ay argument (seconds) if you want to wait between each
retry.

When the connection is not available, an | nt er f aceEr r or is raised. Use the is_connected() method to
check the connection without raising an error.

Raises | nt er f aceEr r or on errors.

Method MySQLConnecti on. reconnect (attenpts=1, del ay=0)

Attempt to reconnect with the MySQL server.

The argument at t enpt s specifies the number of times a reconnect is tried. The del ay argument is the
number of seconds to wait between each retry.

You might set the number of attempts higher and use a longer delay when you expect the MySQL server to
be down for maintenance, or when you expect the network to be temporarily unavailable.

29

Method MySQLConnect i on. rol | back()

Method MySQLConnecti on. rol | back()

This method sends the ROLLBACK command to the MySQL server, undoing all data changes from the
currentt r ansact i on. Since by default, Connector/Python does not auto commit, it is possible to cancel
transactions when using transactional storage engines such as | nnoDB.

See the commit() method for committing transactions.

>>> cursor. execut e(" | NSERT | NTO enpl oyees (first_nanme) VALUES (%)", ('Jane'))
>>> cnx. rol | back()

Method MySQ.Connecti on. set _charset col | ati on(char set =None,
col | ati on=None)

This method sets the character set and collation to be used for the current connection. The char set
argument can be either the name of a character set, or the numerical equivalent as defined in
const ant s. Char act er Set .

When col | ati on is None, the default will be looked up and used.
The char set argument then be either:
In the following example, we set the character setto | at i n1 and the collation will be set to the default

[atinl_swedish_ci:

>>> cnx = nysql.connector. connect (user="scott"')
>>> cnx. set_charset('latinl')

Specify a specific collation as follows:

>>> cnx = nysql.connector. connect (user="scott"')
>>> cnx.set_charset('latinl', 'latinl_general _ci')

Method MySQLConnection. set _client flags(flags)

This method sets the client flags which are used when connecting with the MySQL server and returns the
new value. The f | ags argument can be either an integer or a sequence of valid client flag values (see
Class const ant s. C i ent Fl ag).

If f | ags is a sequence, each item in the sequence will set the flag when the value is positive or unset it
when negative. For example, to unset LONG FLAG and set the FOUND ROWS flags:

>>> from nmysql . connector. constants inmport CientFlag
>>> cnx.set_client_flags([CientFl ag. FOUND_ ROAS, -CientFl ag. LONG FLAG)
>>> cnx. reconnect ()

Note that client flags are only set or used when connecting with the MySQL server. It is therefor necessary
to reconnect after making changes.

Returns an integer.
Property MySQLConnect i on. aut oconmm t

This property is used to toggle the auto commit feature of MySQL and retrieve the current state. When the
value evaluates to True, auto commit will be turned, otherwise it is turned off.

30

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_commit

Property MySQLConnect i on. char set _nane

Note that auto commit is disabled by default when connecting through Connector/Python. This can be
toggled using the connection parameter aut oconmi t .

When the auto commit is turned off, you have to commit transactions when using transactional storage
engines such as InnoDB or NDBCluster.

>>> cnx. aut oconmi t

Fal se

>>> cnx.autocomit = True
>>> cnx. aut ocommi t

True

Returns True or False.

Property MySQLConnecti on. charset nane
This property returns which character set is used for the connection whether it is connected or not.
Returns a string.

Property MySQLConnect i on. col | ati on_nane
This property returns which collation is used for the connection whether it is connected or not.
Returns a string.

Property MySQLConnecti on. connection_id

This property returns the connection ID (thread ID or session ID) for the current connection or None when
not connected.

Returns a integer or None.

Property MySQLConnect i on. dat abase

This property is used to set current (active) database executing the USE command. The property can also
be used to retrieve the current database name.

'test
" nysql

>>> cnx. dat abase
>>> cnx. dat abase
>>> cnx. dat abase

u' nysql

Returns a string.

Property MySQLConnect i on. get _war ni ngs

This property is used to toggle whether warnings should be fetched automatically or not. It accepts True or
False (default).

Fetching warnings automatically could be useful when debugging queries. Cursors will make warnings
available through the method MySQLCursor.fetchwarnings().

>>> cnx. get _warni ngs = True
>>> cursor. execut e(' SELECT "a"+1')
>>> cursor.fetchall ()

31

Property MySQLConnecti on. rai se_on_war ni ngs

[(1.0,)]

>>> cursor. f et chwar ni ngs()
[(u" Warning', 1292, u"Truncated incorrect DOUBLE value: 'a'")]

Returns True or False.

Property MySQLConnecti on. rai se_on_war ni ngs

This property is used to toggle whether warnings should raise exceptions or not. It accepts True or False
(default).

Toggling r ai se_on_war ni ngs will also toggle get _war ni ngs since warnings need to be fetched so
they can be raised as exceptions.

Note that you might always want to check setting SQL Mode if you would like to have the MySQL server
directly report warnings as errors. It is also good to use transactional engines so transactions can be rolled
back when catching the exception.

Result sets needs to be fetched completely before any exception can be raised. The following example
shows the execution of a query which produces a warning

>>> cnx.rai se_on_warni ngs = True
>>> cursor. execute(' SELECT "a"+1")
>>> cursor.fetchall ()

nmysql . connector.errors. DataError: 1292: Truncated incorrect DOUBLE val ue: 'a

Returns True or False.

Property MySQLConnecti on. server host

This read-only property returns the hostname or IP address used for connecting with the MySQL server.

Returns a string.

Property MySQLConnecti on. server _port

This read-only property returns the TCP/IP port used for connecting with the MySQL server.

Returns a integer.

Property MySQLConnecti on. sql _node

This property is used to retrieve and set the SQL Modes for the current. The value should be list of different
modes separated by comma (","), or a sequence of modes, preferably using the constants.SQLMode class.

To unset all modes, pass an empty string or an empty sequence.

>>> cnx. sgl _nmode = ' TRADI TI ONAL, NO_ENG NE_SUBSTI TUTI ON

>>> cnx. sqgl _nmode.split(',")

[u' STRICT_TRANS TABLES , u' STRICT_ALL TABLES , u' NO ZERO | N DATE ,
u' NO_ZERO DATE' , u' ERROR FOR DI VI SI ON BY ZERO , u' TRADI Tl ONAL'

u' NO_AUTO CREATE USER , u' NO ENG NE_SUBSTI TUTI ON]

>>> from nysql . connector. constants i nport SQ.Mbde

>>> cnx. sql _node = [SQ.Mbde. NO_ZERO DATE, SQ.Mbde. REAL_AS FLOAT]
>>> cnx. sql _node

u' REAL_AS FLOAT, NO_ZERO DATE'

32

Property MySQLConnecti on.ti ne_zone

Returns a string.

Property MySQLConnection.tinme_zone

This property is used to set the time zone session variable for the current connection and retrieve it.

>>> cnx.time_zone = '+00: 00'

>>> cur.execute(' SELECT NON)') ; cur.fetchone()
(datetine.dateti me(2012, 6, 15, 11, 24, 36),)
>>> cnx.tinme_zone = '-09: 00

>>> cur.execute(' SELECT NON)') ; cur.fetchone()
(datetime.dateti me(2012, 6, 15, 2, 24, 44),)

>>> cnx.time_zone

u' -09: 00

Returns a string.

Property MySQLConnecti on. uni x_socket
This read-only property returns the UNIX socket user for connecting with the MySQL server.

Returns a string.

Property MySQLConnect i on. user
This read-only property returns the username used for connecting with the MySQL server.

Returns a string.

Class cur sor. MySQLCur sor

The MySQLCursor class is used to instantiate object which can execute operation such as SQL queries.
They interact with the MySQL server using a MySQLConnection object.

Constructor cur sor . MySQLCur sor

The constructor initializes the instance with the optional connect i on, which should be an instance of
MySQLConnection.

In most cases, the MySQLConnection method cur sor () is used to instantiate a MySQLCursor object.

Method MySQLCur sor . cal | proc(procnane, args=())

This method calls a stored procedure with the given name. The ar gs sequence of parameters must
contain one entry for each argument that the routine expects. The result is returned as modified copy of
the input sequence. Input parameters are left untouched, output and input/output parameters replaced with
possibly new values.

Result set provided by the stored procedure are automatically fetched and stored as
MySQLBufferedCursor instances. See stored_results() for more information.

The following example shows how to execute a stored procedure which takes two parameters, multiplies
the values and returns the product:

Definition of the nultiply stored procedure:

33

Method MySQLCur sor . cl ose()

CREATE PROCEDURE nul tiply(IN pFacl INT, |IN pFac2 INT, OUT pProd | NT)
BEA N

SET pProd := pFacl * pFac2;

END

>>> args = (5, 5, 0) # 0 is to hold value of the OUT paraneter pProd
>>> cursor.callproc(' multiply', args)

("5, '5", 25L)

Method MySQLCur sor . cl ose()

This method will close the MySQL cursor, resetting all results and removing the connection.

Use cl ose() every time you are done using the cursor.

Method MySQLCur sor . execut e(oper ati on, parans=None,
mul ti =Fal se)

This method prepare the given database oper at i on (query or command). The parameters found in the
tuple or dictionary par anms will be bound to the variables in the operation. Variables are specified using %s
markers or named markers %(name)s.

For example, insert information about a new employee and selecting again the data of this person:

insert = (

"I NSERT | NTO enpl oyees (enp_no, first_nane, |ast_nane, hire_date) "
"VALUES (%, %, %, %)")

data = (2, 'Jane', 'Doe', datetine.date(2012, 3, 23))

cursor. execute(insert, data)

sel ect = "SELECT * FROM enpl oyees WHERE enp_no = % enp_no) s"
cursor. execute(select, { "enmp_no': 2 })

Note that the data is converted from Python object to something MySQL understand. In the above
example, the datetime.date() instance is converted to '2012-03-23" in the above example.

When mul ti is setto True, execut e() will be able to execute multiple statements. It will return an iterator
which makes it possible to go through all results for each statement. Note that using parameters is not
working well in this case, and it's usually a good idea to execute each statement on its own.

In the following example we select and insert data in one operation and display the result:

operation = ' SELECT 1; INSERT INTO t1 VALUES (); SELECT 2'
for result in cursor.execute(operation):
if result.wth_rows:
print("Statenent '{}' has follow ng rows:".fornat (
resul t.statenent))
print(result.fetchall())
el se:
print("Affected row(s) by query '{}' was {}".format(
result.statenment, result.rowcount))

If the connection was configured to fetch warnings, warnings generated by the operation will be available
through the method MySQLCursor.fetchwarnings().

Returns an iterator when multi is True.
Method MySQLCur sor . execut enany(oper ati on, seq_parans)

This method prepares a database operation (query or command) and then execute it against all parameter
sequences or mappings found in the sequence seq_of par ans.

34

Method MySQLCur sor . fetchal | ()

The execut emany() is simply iterating through the sequence of parameters calling the execut e()
method. Inserting data, however, is optimized by batching them using the multiple rows syntax.

In the following example we are inserting 3 records:

data = [
(' Jane', date(2005, 2, 12)),
('Joe', date(2006, 5, 23)),
(' John', date(2010, 10, 3)),

stnt = "I NSERT | NTO enpl oyees (first_name, hire_date) VALUES (%, %)"
cursor. execut emany(stnt, data)

In the above example, the INSERT statement sent to MySQL would be as follows: | NSERT | NTO
enpl oyees (first_name, hire date) VALUES ('Jane', '2005-02-12"), ('Joe',
' 2006- 05-23"), ('John', '2010-10-03").

Note that it is not possible to execute multiple statements using the execut emany() method. Doing so
will raise an | nt er nal Err or exception.

Method MySQLCur sor. fetchal | ()

The method fetches all or remaining rows of a query result set, returning a list of tuples. An empty list is
returned when no rows are (anymore) available.

The following examples shows how to retrieve the first 2 rows of a result set, and then retrieve the
remaining rows:

>>> cursor. execut e(" SELECT * FROM enpl oyees ORDER BY enp_no")
>>> head_rows = cursor.fetchmany(size=2)
>>> remai ni ng_rows = cursor.fetchall ()

Note that you have to fetch all rows before being able to execute new queries using the same connection.

Returns a list of tuples or empty list when no rows available.
Method MySQLCur sor . f et chmany(si ze=1)

This method fetches the next set of rows of a query results, returning a list of tuples. An empty list is
returned when no more rows are available.

The number of rows returned can be specified using the size argument, which defaults to one. Fewer rows
might be returned, when there are not more rows available than specified by the argument.

Note that you have to fetch all rows before being able to execute new queries using the same connection.

Returns a list of tuples or empty list when no rows available.

Method MySQLCur sor . f et chone()

This method retrieves the next row of a query result set, returning a single sequence, or None when no
more data is available.The returned tuple consists of data returned by the MySQL server converted to
Python objects.

The f et chone() method is used by fetchmany() and fetchall(). It is also used when using the
MySQLCursor instance as an iterator.

The following examples show how to iterate through the result of a query using f et chone() :

35

Method MySQLCur sor . f et chwar ni ngs()

Using a while-Ioop
cursor. execut e(" SELECT * FROM enpl oyees")
row = cursor.fetchone()
while row is not None

print (row)

row = cursor.fetchone()
Using the cursor as iterator
cursor. execut e(" SELECT * FROM enpl oyees")
for rowin cursor

print (row)
Note that you have to fetch all rows before being able to execute new queries using the same connection.

Returns a tuple or None.

Method MySQLCur sor . f et chwar ni ngs()

This method returns a list of tuples containing warnings generated by previously executed statement. Use
the connection's get _war ni ngs property to toggle whether warnings has to be fetched.

The following example shows a SELECT statement which generated a warning:

>>> cnx.get_warni ngs = True
>>> cursor. execute(' SELECT "a"+1')
>>> cursor. fetchall ()

[(1.0,)]

>>> cursor. f et chwarni ngs()
[(u"Warning', 1292, u"Truncated incorrect DOUBLE value: 'a'")]

It is also possible to raise errors when warnings are found. See the MySQLConnection property
raise_on_warnings.

Returns a list of tuples.

Method MySQLCur sor. stored _resul ts()

This method returns an list iterator object which can be used to go through result sets provided by stored
procedures after calling them using the callproc() method.

In the following example we execute a stored procedure which will provide two result sets. We use
stored_resul ts() to retrieve them:

>>> cursor.call proc('spl')

0
>>> for result in cursor.stored_results():
print result.fetchall ()

[(1)]
[(2)]

Note that the result sets stay available until you executed another operation or call another stored
procedure.

Returns a listiterator.

Property MySQLCur sor . col utm_nanes

This read-only property returns the column names of a result set as sequence of (unicode) strings.

36

Property MySQLCur sor . st at enent

The following example shows how you can create a dictionary out of a tuple containing data with keys
using col unm_nanes:

cursor. execut e("SELECT | ast_nane, first_nanme, hire_date "
"FROM enpl oyees WHERE enp_no = %", (123,))

row = dict(zi p(cursor.colum_nanes, cursor.fetchone())

print("{last_nanme}, {first_nanme}: {hire_date}".format(row))

Returns a tuple.

Property MySCQLCur sor . st at enent

This read-only property returns the last executed statement. In case multiple statements where executed, it
will show the actual statement.

The st at enent property might be useful for debugging and showing what was send to the MySQL server.

Returns a string.

Property MySQLCur sor. wi t h_rows

This read-only property will return True when the result of the executed operation provides rows.

The wi t h_r ows property is useful when executing multiple statements and you need to fetch rows. In the
following example we only report the affected rows by the UPDATE statement:

i nport nysql . connect or
cnhx = mysql . connector. connect (user="'scott', database='test')
cursor = cnx.cursor()
operation = ' SELECT 1; UPDATE t1 SET cl1 = 2; SELECT 2
for result in cursor.execute(operation, nulti=True):
if result.with_rows:
result.fetchall ()
el se
print("Updated row(s): {}".format(result.rowcount))

Class cur sor. MySQLCur sor Buf f er ed

This class is inheriting from cursor.MySQLCursor and if needed automatically retrieves rows after an
operation has been executed.

MySQLCursorBuffered can be useful in situations where two queries, with small result sets, need to be
combined or computed with each other.

You can either use the buf f er ed argument when using the connection's cur sor () method, or you can
use the buf f er ed connection option to make all created cursors by default buffering.

i mport nysql . connect or

cnx = nysgl . connector. connect ()

Only this particular cursor will be buffering results
cur sor. cur sor (buf f ered=Tr ue)

All cursors by default buffering

cnx = mysqgl . connect or. connect (buf f er ed=Tr ue)

See Tutorial: Raise employee's salary using a buffering cursor for a practical use case.

Class constants. Cl i ent Fl ag

This class provides constants defining MySQL client flags which can be used upon connection to configure
the session. The ClientFlag class is available when importing mysql.connector.

37

Class const ant s. Fi el dType

>>> jnport nysql. connector
>>> nysql . connector. Cl i ent Fl ag. FOUND_RO\G
2

See Method MySQLConnecti on. set _client flags(fl ags) and the connection argument
client_flag.

Note that the ClientFlag class can not be instantiated.

Class const ant s. Fi el dType

This class provides all supported MySQL field or data types. They can be useful when dealing with raw
data or defining your own converters. The field type is stored with every cursor in the description for each
column.

The following example shows how you can print the name of the data types for each of the columns in the
result set.

from__future__ inmport print_function
i mport nysql . connect or
from nysqgl . connector inport FieldType
cnx = nysgl.connector. connect (user="'scott', database="test')
cursor = cnx.cursor()
cur sor. execut e(
"SELECT DATE(NOW)) AS “ci1°, TIME(NOW)) AS “c2°, "
"NOWN) AS "c3", '"a string' AS 'c4’, 42 AS 'c5 ")
rows = cursor.fetchall ()
for desc in cursor.description
col name = desc[0]
coltype = desc[1]
print("Colum {} has type {}".format(
col nane, Fi el dType. get _i nfo(col type)))
cursor.cl ose()
chx. cl ose()

Note that the FieldType class can not be instantiated.

Class const ant s. SQLMode

This class provides all known MySQL Server SQL Modes. It is mostly used when setting the
SQL modes at connection time using the connection's property sql _node. See Property
MySQ.Connect i on. sgl _node.

Note that the SQLMode class can not be instantiated.

Class const ant s. Char act er Set

This class provides all known MySQL characters sets and their default collations. See Method
MySQ.Connect i on. set _charset col | ati on(charset=None, coll ati on=None) for examples.

Note that the CharacterSet class can not be instantiated.
Class const ants. RefreshOpti on

* RefreshOpti on. GRANT

Refresh the grant tables, like FLUSH PRI VI LEGES.

38

http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html

Class const ant s. RefreshQpti on

RefreshOpti on. LOG

Flush the logs, like FLUSH LOGS.

Ref reshOpti on. TABLES

Flush the table cache, like FLUSH TABLES.
Ref reshOpti on. HOSTS

Flush the host cache, like FLUSH HOSTS.
Ref reshOpti on. STATUS

Reset status variables, like FLUSH STATUS.
Ref r eshOpt i on. THREADS

Flush the thread cache.

Ref reshOpti on. SLAVE

On a slave replication server, reset the master server information and restart the slave, like RESET
SLAVE.

Ref reshOpti on. MASTER

On a master replication server, remove the binary log files listed in the binary log index and truncate the
index file, like RESET MASTER.

39

http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/reset-slave.html
http://dev.mysql.com/doc/refman/5.5/en/reset-slave.html
http://dev.mysql.com/doc/refman/5.5/en/reset-master.html

40

Chapter 8. MySQL Connector/Python Change History
Changes in MySQL Connector/Python 1.0.6 (30 August 2012, beta)

Second beta release.
Functionality Added or Changed
e Changed name and version of distributions to align with other MySQL projects:

< The version now includes the suffix 'b' for beta and 'a’ for alpha followed by a number. This version is
used in the source and built distributions. GA versions will have no suffix.

« The RPM spec files have been updated to create packages whose names are aligned with RPMs from
other MySQL projects.

» Changed how MySQL server errors are mapped to Python exceptions. We now use the SQLSt at e
(when available) to raise a better error.

« Incompatibility: some server errors are now raised with a different exception.

* Itis possible to override how errors are raised using the
mysql . connect or. custom error_exception() function, defined in the
mysql . connect or. err or s module. This can be useful for certain frameworks to align with other
database drivers.

Bugs Fixed
 Fixed version-specific code so Connector/Python works with Python 3.3. (Bug #14524942)

e Fixed MySQLCur sor Raw. f et chal | () so it does not raise an exception when results are available.
(Bug #14517262, Bug #66465)

* Fixed installation of ver si on. py on OS X:

e version. py is now correctly installed on OS X in the mysql . connect or package. Previously, it
was installed through dat a_fi | es, and ver si on. py ended up in the system-wide package location
of Python, from which it could not be imported.

« data_fil es isnotused any longerin set up. py and is removed. Extra files like ver si on. py are
now copied in the custom Di st ut i | s commands.

(Bug #14483142)

» Timeout for unit tests has been set to 10 seconds. Test cases can individually adjust it to be higher or
lower. (Bug #14487502)

» Fixed test casesintest _nysql _dat abase. py that failed when using YEAR(2) with MySQL 5.6.6 and
greater. (Bug #14460680)

» Fixed SSL unit testing for source distributions:

e The SSL keys and certificates were missing and are now added to the source distribution. Now SSL
testing works properly.

« Additionally for the Windows platform, forward slashes were added to the option file creation so the
MySQL server can pick up the needed SSL files.

41

Changes in MySQL Connector/Python 1.0.5 (17 July 2012, beta)

(Bug #14402737)

Changes in MySQL Connector/Python 1.0.5 (17 July 2012, beta)

First beta release.
Functionality Added or Changed

» Added SQLMode class in the constants module to make it easier to set modes. For example:

cnx. sql _node = [SQLMvde. REAL_AS FLOAT, SQLMvde. NO ZERO DATE]

» Added descriptive error codes for both client and server errors in the module er r or code. A new sub-
package | ocal es has been added, which currently only supports English client error messages.

For example, er r or code. CR_CONNECTI ON_ERRCR is 2002.

Changes in MySQL Connector/Python 1.0.4 (07 July 2012, alpha)

Internal alpha release.
Bugs Fixed

e Incompatible Change: The MySQLConnect i on methods unset client flag() and
set _client flag() have been removed. Use theset client flags() method instead using a
sequence. (Bug #14259996)

» Incompatible Change: The method MySQ.Connecti on. set _char set () has been removed and
replaced by MySQLConnect i on. set _charset _col | ati on() to simplify setting and retrieving
character set and collation information. The MySQLConnect i on properties col | ati on and char set
are now read-only. (Bug #14260052)

* Incompatible Change: Fixed MySQLConnect i on. cnd_quer y() to raise an error when the operation
has multiple statements. We introduced a new method My SQLConnecti on. cnd_query_i t er () which
needs to be used when multiple statements send to the MySQL server. It returns a generator object to
iterate through results.

When executing single statements, My SQLCur sor . execut e() will always return None. You can use
the MySQLCur sor property wi t h_r ows to check whether a result could have rows or not.

MySQLCur sor . execut e() returns a generator object with which you can iterate over results when
executing multiple statements.

The MySQLCur sor . next _resul t set () became obsolete and was removed

and the MySQLCur sor . next _proc_resul t () method has been renamed to

MySQLCur sor. proc_resul ts(), which returns a generator object. The MySQLCur sor. wi t h_r ows
property can be used to check if a result could return rows. The nul ti pl e_resul t set. py example
script shows how to go through results produced by sending multiple statements. (Bug #14208326)

» Fixed MySQLCur sor . execut emany() when | NSERT statements use the ON DUPLI CATE KEY clause
with a function such as VALUES() . (Bug #14259954)

 Fixed unit testing on the Microsoft Windows platform. (Bug #14236592)

» Fixed converting adat eti ne. ti ne to a MySQL type using Python 2.4 and 2.5. The strfti nme()
function has no support for the % mark in those Python versions. (Bug #14231941)

42

Changes in MySQL Connector/Python 1.0.3 (08 June 2012, alpha)

e Fixed cur sor. Cur sor Base attributes descri pti on, | astrow d and r owcount to be read-only
properties. (Bug #14231160)

» Fixed \ySQ_Connection. cnd_query() and other methods so they check first whether there are
unread results. (Bug #14184643)

Changes in MySQL Connector/Python 1.0.3 (08 June 2012, alpha)

Internal alpha release.
Functionality Added or Changed
e Adding new Di st uti | s commands to create Windows Installers using WiX and RPM packages.

» Adding support for time values with a fractional part, for MySQL 5.6.4 and greater. A new example script
m cr oseconds. py was added to show this functionality.

Changes in MySQL Connector/Python 1.0.2 (19 May 2012, alpha)

Internal alpha release.
Functionality Added or Changed

» Added more unit tests for modules like connect i on and net wor k as well as testing the SSL
functionality.

Bugs Fixed
 Fixed bootstrapping MySQL 5.6 running unit tests.

Messages send by the bootstrapped MySQL server to st dout and st derr are now discarded. (Bug
#14048685)

 Fixing and refactoring the nmysql . connect or . err or s module. (Bug #14039339)

Changes in MySQL Connector/Python 1.0.1 (26 April 2012, alpha)

Internal alpha release.
Functionality Added or Changed

» Change the version so it only contain integers. The 'a’ or 'alpha’ suffix will not be present in packages,
but it will be mentioned in the ver si on. py module since net aset upi nf 0. py uses this information to
set, for example, the Trove classifiers dynamically.

Changes in MySQL Connector/Python 1.0.0 (22 April 2012, alpha)

Internal alpha release.
Functionality Added or Changed

* Incompatible Change: MySQLConnect i on. reconnect () can be used to reconnect to the MySQL
server. It accepts number of retries and an optional delay between attempts.

MySQLConnect i ong. pi ng() is now a method and works the way the MySQL C API nysql _pi ng()
function works: it raises an error. It can also optionally reconnect.

43

Changes in MySQL Connector/Python 1.0.0 (22 April 2012, alpha)

MySQ.Connection.is_connect ed() now returns Tr ue when connection is available, Fal se
otherwise.

pi ng() andis_connect ed() are backwards incompatible. (Bug #13392739)

Refactored the modules connection and protocol and created a new module net wor k. The

My SQLPr ot ocol does not keep a reference to the connection object any more and deals only with
creating and parsing MySQL packets. Network interaction is now done by the MySQLConnect i on
objects (with the exception of My SQLPr ot ocol . read_text _resul t()).

Bugs Fixed

Fixed met aset upi nf 0. py to use the Connector/Python which is being installed instead of the version
already installed. (Bug #13962765)

Fixed MySQLCur sor . descri pti on so it stores column names as Unicode. (Bug #13792575)
Fixed dbapi . Bi nary to be a bytes types for Python 3.x. (Bug #13780676)

Fixed automatic garbage collection which caused memory usage to grow over time. Note that
MySQ.Connect i on does not keep track of its cursors any longer. (Bug #13435186)

Fixed setting time zone for current MySQL session. (Bug #13395083)
Fixed setting and retrieving character set and collation. (Bug #13375632)

Fixed handling of errors after authentication for Python 3. (Bug #13364285)

44

	MySQL Connector/Python
	Table of Contents
	Preface and Legal Notices
	Chapter 1. MySQL Connector/Python
	Chapter 2. Connector/Python Versions
	Chapter 3. Connector/Python Installation
	Installing Connector/Python Source Distribution on Linux, UNIX, or OS X
	Installing Connector/Python Source Distribution on Microsoft Windows
	Verifying Your Connector/Python Installation

	Chapter 4. Connector/Python Coding Examples
	Connecting to MySQL Using Connector/Python
	Creating Tables Using Connector/Python
	Inserting Data Using Connector/Python
	Querying Data Using Connector/Python

	Chapter 5. Connector/Python Tutorials
	Tutorial: Raise employee's salary using a buffering cursor

	Chapter 6. Connector/Python Connection Arguments
	Chapter 7. Connector/Python API Reference
	Errors and Exceptions
	Module errorcode
	Exception errors.Error
	Exception errors.Warning
	Exception errors.InterfaceError
	Exception errors.DatabaseError
	Exception errors.InternalError
	Exception errors.OperationalError
	Exception errors.ProgrammingError
	Exception errors.IntegrityError
	Exception errors.DataError
	Exception errors.NotSupportedError
	Function errors.custom_error_exception(error=None, exception=None)

	Class connection.MySQLConnection
	Constructor connection.MySQLConnection(**kwargs)
	Method MySQLConnection.close()
	Method MySQLConnection.config(**kwargs)
	Method MySQLConnection.connect(**kwargs)
	Method MySQLConnection.commit()
	Method MySQLConnection.cursor(buffered=None, raw=None, cursor_class=None)
	Method MySQLConnection.cmd_change_user(username='', password='', database='', charset=33)
	Method MySQLConnection.cmd_debug()
	Method MySQLConnection.cmd_init_db(database)
	Method MySQLConnection.cmd_ping()
	Method MySQLConnection.cmd_process_info()
	Method MySQLConnection.cmd_process_kill(mysql_pid)
	Method MySQLConnection.cmd_quit()
	Method MySQLConnection.cmd_query(statement)
	Method MySQLConnection.cmd_query_iter(statement)
	Method MySQLConnection.cmd_refresh(options)
	Method MySQLConnection.cmd_shutdown()
	Method MySQLConnection.cmd_statistics()
	Method MySQLConnection.disconnect()
	Method MySQLConnection.get_rows(count=None)
	Method MySQLConnection.get_row()
	Method MySQLConnection.get_server_info()
	Method MySQLConnection.get_server_version()
	Method MySQLConnection.is_connected()
	Method MySQLConnection.isset_client_flag(flag)
	Method MySQLConnection.ping(attempts=1, delay=0)
	Method MySQLConnection.reconnect(attempts=1, delay=0)
	Method MySQLConnection.rollback()
	Method MySQLConnection.set_charset_collation(charset=None, collation=None)
	Method MySQLConnection.set_client_flags(flags)
	Property MySQLConnection.autocommit
	Property MySQLConnection.charset_name
	Property MySQLConnection.collation_name
	Property MySQLConnection.connection_id
	Property MySQLConnection.database
	Property MySQLConnection.get_warnings
	Property MySQLConnection.raise_on_warnings
	Property MySQLConnection.server_host
	Property MySQLConnection.server_port
	Property MySQLConnection.sql_mode
	Property MySQLConnection.time_zone
	Property MySQLConnection.unix_socket
	Property MySQLConnection.user

	Class cursor.MySQLCursor
	Constructor cursor.MySQLCursor
	Method MySQLCursor.callproc(procname, args=())
	Method MySQLCursor.close()
	Method MySQLCursor.execute(operation, params=None, multi=False)
	Method MySQLCursor.executemany(operation, seq_params)
	Method MySQLCursor.fetchall()
	Method MySQLCursor.fetchmany(size=1)
	Method MySQLCursor.fetchone()
	Method MySQLCursor.fetchwarnings()
	Method MySQLCursor.stored_results()
	Property MySQLCursor.column_names
	Property MySQLCursor.statement
	Property MySQLCursor.with_rows

	Class cursor.MySQLCursorBuffered
	Class constants.ClientFlag
	Class constants.FieldType
	Class constants.SQLMode
	Class constants.CharacterSet
	Class constants.RefreshOption

	Chapter 8. MySQL Connector/Python Change History

